Darts项目中TSMixer模型的归一化层选择与优化
2025-05-27 01:04:18作者:齐添朝
引言
在时间序列预测领域,归一化技术对模型性能有着至关重要的影响。本文将深入分析Darts项目中TSMixer模型使用的归一化层实现,探讨不同归一化方法在时间序列预测任务中的表现差异。
TSMixer模型归一化层现状
Darts项目中的TSMixer实现主要采用了LayerNorm(层归一化),而没有提供BatchNorm(批归一化)选项。这一设计选择源于原论文作者的发现:在小批量数据上,LayerNorm通常能获得更好的预测结果。
然而,当前实现中的TimeBatchNorm2d类却基于BatchNorm2d构建,这与论文建议存在一定偏差。在实际测试中,BatchNorm2d确实表现出训练不稳定的问题,特别是在处理非平稳目标和小批量数据时。
归一化方法对比实验
通过在不同数据集上的对比实验,我们观察到以下现象:
- LayerNorm(绿色曲线):表现稳定,训练过程收敛良好
- BatchNorm2d(橙色曲线):在某些数据集上表现不稳定,训练曲线波动大
- InstanceNorm2d(灰色曲线):表现与LayerNorm相当,训练过程平稳
值得注意的是,在ETTh1/ETTh2等标准时间序列数据集上,BatchNorm2d的表现与LayerNorm相当,这表明BatchNorm对平稳数据集仍然有效。
技术深入分析
进一步研究发现,TSMixer当前实现的LayerNormNoBias与InstanceNorm2d在数学上是等价的。这是因为:
- LayerNorm应用于最后两个维度(特征和时间步长)
- InstanceNorm2d按通道应用归一化
- 在单通道情况下,两种方法计算方式完全相同
这一发现解释了为什么实验结果显示两种归一化方法性能相似。
实践建议
基于以上分析,对于Darts项目中TSMixer模型的使用者,我们建议:
- 对于一般时间序列预测任务,保持默认的LayerNorm设置
- 当处理非平稳数据或小批量训练时,可考虑使用InstanceNorm2d变体
- 在平稳数据集上,BatchNorm仍可作为备选方案
结论
归一化层的选择需要根据具体数据集特性和训练条件来决定。Darts项目当前实现的LayerNormNoBias已经涵盖了InstanceNorm2d的功能,因此无需额外添加InstanceNorm选项。这一发现帮助我们更好地理解了不同归一化方法在时间序列预测中的实际效果,为模型调优提供了理论依据。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134