DeepEval项目中使用EvaluationDataset创建自定义测试集的技术指南
前言
在使用DeepEval进行大语言模型评估时,创建高质量的测试数据集是确保评估结果准确性的关键环节。本文将详细介绍如何利用DeepEval的EvaluationDataset功能来构建自定义测试集,并分享在实际操作中可能遇到的问题及解决方案。
EvaluationDataset基础用法
DeepEval提供的EvaluationDataset类是一个强大的工具,可以帮助开发者从CSV文件中快速构建测试用例集。基本使用方法如下:
from deepeval.dataset import EvaluationDataset
dataset = EvaluationDataset()
dataset.add_test_cases_from_csv_file(
file_path="测试数据.csv",
input_col_name="prompt",
actual_output_col_name="实际输出",
expected_output_col_name="预期输出"
)
常见问题解析
在实际使用过程中,开发者可能会遇到以下典型问题:
-
字段验证错误:当CSV文件中某些必填字段为空时,系统会抛出验证错误。例如错误提示"Either 'input' and 'actualOutput' or 'multimodalInput' and 'multimodalActualOutput' must be provided"表明输入或输出字段缺失。
-
异步执行冲突:在使用pandas的apply方法时可能出现"Event loop is already running"错误,这是因为异步执行环境冲突导致的。
最佳实践建议
-
数据预处理:在加载CSV文件前,确保所有必填字段都有有效值,特别是input、actual_output和expected_output这些核心字段。
-
性能考量:当使用OpenAI等云端API进行评估时,评估过程可能会比较耗时,建议:
- 对小规模数据集先进行测试
- 考虑使用本地模型进行评估
- 合理安排评估任务的执行时间
-
错误排查:如果遇到字段显示为None的问题,建议:
- 检查CSV文件的编码格式
- 验证列名是否完全匹配
- 确认文件路径是否正确
评估指标配置示例
配合EvaluationDataset,可以定义各种评估指标。以下是一个正确性评估的配置示例:
from deepeval.metrics import GEval
correctness_metric = GEval(
name="正确性评估",
evaluation_steps=[
"检查'实际输出'中的事实是否与'预期输出'中的事实相矛盾",
"对细节遗漏应给予较重扣分",
"模糊语言或相矛盾的观点可以接受"
],
evaluation_params=[
LLMTestCaseParams.INPUT,
LLMTestCaseParams.ACTUAL_OUTPUT,
LLMTestCaseParams.EXPECTED_OUTPUT
],
)
总结
通过DeepEval的EvaluationDataset,开发者可以高效地构建和管理测试数据集,为语言模型评估提供可靠的基础。在实际应用中,注意数据质量检查和性能优化,可以显著提升评估过程的效率和准确性。当遇到问题时,系统提供的错误信息通常能给出明确的排查方向,帮助开发者快速定位和解决问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00