DeepEval项目中使用EvaluationDataset创建自定义测试集的技术指南
前言
在使用DeepEval进行大语言模型评估时,创建高质量的测试数据集是确保评估结果准确性的关键环节。本文将详细介绍如何利用DeepEval的EvaluationDataset功能来构建自定义测试集,并分享在实际操作中可能遇到的问题及解决方案。
EvaluationDataset基础用法
DeepEval提供的EvaluationDataset类是一个强大的工具,可以帮助开发者从CSV文件中快速构建测试用例集。基本使用方法如下:
from deepeval.dataset import EvaluationDataset
dataset = EvaluationDataset()
dataset.add_test_cases_from_csv_file(
file_path="测试数据.csv",
input_col_name="prompt",
actual_output_col_name="实际输出",
expected_output_col_name="预期输出"
)
常见问题解析
在实际使用过程中,开发者可能会遇到以下典型问题:
-
字段验证错误:当CSV文件中某些必填字段为空时,系统会抛出验证错误。例如错误提示"Either 'input' and 'actualOutput' or 'multimodalInput' and 'multimodalActualOutput' must be provided"表明输入或输出字段缺失。
-
异步执行冲突:在使用pandas的apply方法时可能出现"Event loop is already running"错误,这是因为异步执行环境冲突导致的。
最佳实践建议
-
数据预处理:在加载CSV文件前,确保所有必填字段都有有效值,特别是input、actual_output和expected_output这些核心字段。
-
性能考量:当使用OpenAI等云端API进行评估时,评估过程可能会比较耗时,建议:
- 对小规模数据集先进行测试
- 考虑使用本地模型进行评估
- 合理安排评估任务的执行时间
-
错误排查:如果遇到字段显示为None的问题,建议:
- 检查CSV文件的编码格式
- 验证列名是否完全匹配
- 确认文件路径是否正确
评估指标配置示例
配合EvaluationDataset,可以定义各种评估指标。以下是一个正确性评估的配置示例:
from deepeval.metrics import GEval
correctness_metric = GEval(
name="正确性评估",
evaluation_steps=[
"检查'实际输出'中的事实是否与'预期输出'中的事实相矛盾",
"对细节遗漏应给予较重扣分",
"模糊语言或相矛盾的观点可以接受"
],
evaluation_params=[
LLMTestCaseParams.INPUT,
LLMTestCaseParams.ACTUAL_OUTPUT,
LLMTestCaseParams.EXPECTED_OUTPUT
],
)
总结
通过DeepEval的EvaluationDataset,开发者可以高效地构建和管理测试数据集,为语言模型评估提供可靠的基础。在实际应用中,注意数据质量检查和性能优化,可以显著提升评估过程的效率和准确性。当遇到问题时,系统提供的错误信息通常能给出明确的排查方向,帮助开发者快速定位和解决问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00