使用Kotlin和ARC框架构建任务管理AI代理
2025-06-09 21:41:03作者:余洋婵Anita
项目概述
本文将介绍如何使用Kotlin语言结合ARC框架构建一个智能任务管理代理。这个代理能够理解自然语言指令,帮助用户添加、删除和列出任务,展示了现代AI代理开发的基本模式。
技术栈介绍
核心组件
- Kotlin语言:JetBrains开发的现代JVM语言,兼具面向对象和函数式编程特性
- ARC框架:一个用于构建AI代理的开源框架
- LangChain4J:Java/Kotlin版的LangChain实现,提供与大型语言模型(LLM)交互的能力
- OpenAI GPT-4:作为底层语言模型提供自然语言理解能力
环境配置
依赖管理
首先需要配置项目依赖,确保可以访问必要的库:
%useLatestDescriptors
%use coroutines
@file:DependsOn("org.eclipse.lmos:arc-langchain4j-client:0.122.0-M2")
@file:DependsOn("dev.langchain4j:langchain4j-open-ai:1.0.0-beta1")
API密钥设置
使用OpenAI服务需要配置API密钥:
val openAiApiKey = System.getenv("OPENAI_API_KEY") ?: "YOUR-OPENAI-API-KEY"
模型配置
配置与GPT-4模型的连接:
import dev.langchain4j.model.openai.OpenAiChatModel
import org.eclipse.lmos.arc.agents.llm.ChatCompleter
import org.eclipse.lmos.arc.client.langchain4j.LangChainClient
import org.eclipse.lmos.arc.client.langchain4j.LangChainConfig
val chatProvider : (String?) -> ChatCompleter = {
LangChainClient(
languageModel = LangChainConfig(
modelName = "gpt-4", // 使用GPT-4模型
url = null, // 默认OpenAI端点
apiKey = openAiApiKey, // API密钥
credentialId = null,
credentialSecret = null,
),
clientBuilder = { config, _ ->
OpenAiChatModel.builder()
.modelName(config.modelName)
.apiKey(config.apiKey)
.build()
}
)
}
代理设计
核心架构
任务管理代理的设计包含以下几个关键部分:
- 代理定义:名称、描述和系统提示
- 输入过滤器:快速拒绝与任务无关的请求
- 工具连接:定义代理可以调用的功能
val agentBuilder = DSLAgents
.init(chatProvider)
.apply {
define {
agent {
name = "task-manager"
description = "Helps the user manage their tasks: add, remove, list tasks."
prompt {
"""
You are a Task Manager Agent.
Your goal is to help the user manage their tasks:
they can add tasks, remove tasks, or list tasks.
# Instructions
- If user wants to add a new task, call the 'add_task' function with the task description.
- If user wants to remove a task, call the 'remove_task' function with the exact task name.
- If user wants to see all tasks, call the 'list_tasks' function.
- If the user asks anything that is not related to tasks, respond with "I only handle tasks."
""".trimIndent()
}
filterInput {
val text = message.lowercase()
if (!text.contains("task") && !text.contains("list") && !text.contains("add") && !text.contains("remove")) {
breakWith("I only handle tasks.")
}
}
tools {
+"add_task"
+"remove_task"
+"list_tasks"
}
}
}
功能实现
定义代理可以调用的三个核心功能:
- 添加任务:将新任务添加到列表中
- 删除任务:从列表中移除指定任务
- 列出任务:显示当前所有任务
defineFunctions {
val tasks = mutableListOf<String>()
function(
name = "add_task",
description = "Add a task to the list",
params = types(string("description", "The description of the new task."))
) { (description) ->
tasks.add(description as String)
"Task '$description' added. Now you have ${tasks.size} task(s)."
}
function(
name = "remove_task",
description = "Remove a task by its exact name",
params = types(string("description", "The task to remove."))
) { (description) ->
val removed = tasks.removeIf { it.equals(description as? String, ignoreCase = true) }
if (removed) "Task '$description' removed."
else "No such task found: '$description'."
}
function(
name = "list_tasks",
description = "List all tasks currently stored",
params = types()
) {
if (tasks.isEmpty()) {
"No tasks found."
} else {
"Here are your tasks:\n" + tasks.joinToString("\n") { "- $it" }
}
}
}
对话测试
测试场景
我们设计了一系列测试对话来验证代理的功能:
val messages = listOf(
"Hi, I'm new here. Can you help me organize my tasks?",
"I need to add a task: Buy groceries for dinner",
"Add another task: Complete the quarterly report by Friday",
"Add task: Schedule team meeting for next week",
"Can you show me all my current tasks?",
"I finished buying groceries - please remove that task",
"What tasks do I still have pending?",
"Could you tell me today's weather forecast?"
)
预期行为
- 能够理解并执行任务管理相关指令
- 对于非任务相关的请求(如天气查询),应礼貌拒绝
- 保持任务列表的状态一致性
结果可视化
HTML生成
为了方便查看对话结果,我们实现了一个简单的HTML生成器:
fun generateMinimalHtml(exchanges: List<Pair<String, String?>>): String {
val sb = StringBuilder()
// HTML结构和样式定义
// ...
exchanges.forEachIndexed { index, (userMessage, agentReply) ->
// 添加用户消息和代理回复
// ...
}
// 闭合HTML标签
// ...
return sb.toString()
}
技术要点解析
- 状态管理:使用可变列表
mutableListOf在内存中维护任务状态 - 输入过滤:通过
filterInput提前拦截无关请求,减少不必要的模型调用 - 工具绑定:将Kotlin函数暴露给AI代理作为可调用工具
- 对话管理:通过
Conversation对象维护对话上下文
扩展思路
- 持久化存储:可将任务列表保存到数据库或文件系统
- 多用户支持:为不同用户维护独立的任务列表
- 任务分类:添加优先级、标签等元数据
- 提醒功能:集成日历系统设置任务提醒
总结
本文展示了如何使用Kotlin和ARC框架构建一个功能完整的任务管理AI代理。通过这个示例,开发者可以学习到:
- AI代理的基本架构设计
- 自然语言指令到具体功能的映射
- 对话状态的管理技巧
- 实际业务功能的集成方法
这种模式可以扩展到各种业务场景,如客服系统、智能助手等,是现代AI应用开发的典型范例。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
194
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
271
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.7 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143