掌握分布式应用新纪元:Stateful Functions

在复杂多变的分布式系统世界中,Stateful Functions 是一个基于状态的函数库,旨在简化分布式状态应用程序的开发。它解决了诸如扩展性、一致性状态管理、分布式服务之间的可靠交互以及资源管理等常见挑战。
这个项目的核心构建于强大的 Apache Flink 之上,提供了一种新的抽象方式来构建分布式应用程序和服务。
核心概念
抽象层
Stateful Functions 应用由以下核心组件组成:
- 状态函数:构成应用的基本构建块,它们是通过消息调用的小型逻辑单元。每个函数作为可唯一寻址的虚拟实例存在,由类型和内部独一无二的 ID(字符串)定义。
- 状态:每个虚拟函数实例都有其私有本地状态,可以通过局部变量访问。
- 入口(Ingresses)与出口(Egresses):入口用于事件最初进入应用,而出口则标准化了事件离开应用的方式。路由器(Routers)负责决定事件最初应由哪个功能实例处理。
模块化与可扩展性
模块 是向 Stateful Functions 应用添加基础构建块(如入口、出口、路由器和状态函数)的入口点。一个应用可以结合多个模块,每个模块贡献整体应用的一部分。这使得不同部分的应用可以由不同的模块贡献,促进了团队间的独立工作,但所有部分仍然部署在同一更大的应用上。
开始使用
获取与构建
需求
- Docker
- Maven 3.5.x 或以上
- Java 8 或以上
- 克隆项目并安装依赖:
git clone <repository-url>
mvn clean install
- 构建 Docker 基础镜像(如果计划使用 Docker 部署):
./tools/docker/build-stateful-functions.sh
运行示例
尝试运行预先存在的 Greeter 示例:
cd statefun-examples/statefun-greeter-example
docker-compose build
docker-compose up
发送消息到 names 主题并查看 greetings 的响应以了解示例如何工作。
项目设置
创建一个简单的 Stateful Functions 应用,使用 Maven 快速启动模板:
mvn archetype:generate \
  -DarchetypeGroupId=org.apache.flink \
  -DarchetypeArtifactId=statefun-quickstart \
  -DarchetypeVersion=1.1-SNAPSHOT
然后导入你的IDE进行开发和测试。
IDE 中运行
参考 Harness 示例了解如何在 IDE 中直接运行应用。
部署应用
你可以将 Stateful Functions 应用打包为独立应用或 Flink 作业提交给 Flink 集群。
使用 Docker 镜像部署
创建一个 Dockerfile 来构建应用镜像。
将应用作为 Flink 任务部署
只需简单地将 statefun-flink-distribution 添加为你的应用依赖即可。
参与贡献
如果你对 Stateful Functions 感兴趣或者对其增强有兴趣,欢迎参与进来!你可以从 Apache Flink 网站 学习如何贡献,并在 Jira 上查看 "Stateful Functions" 组件中的社区工作进展。
许可证
本仓库代码遵循 Apache Software License 2 许可。
 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00 MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选
 docs
docs kernel
kernel pytorch
pytorch ops-math
ops-math flutter_flutter
flutter_flutter ohos_react_native
ohos_react_native cangjie_compiler
cangjie_compiler RuoYi-Vue3
RuoYi-Vue3 cangjie_test
cangjie_test Cangjie-Examples
Cangjie-Examples