掌握分布式应用新纪元:Stateful Functions

在复杂多变的分布式系统世界中,Stateful Functions 是一个基于状态的函数库,旨在简化分布式状态应用程序的开发。它解决了诸如扩展性、一致性状态管理、分布式服务之间的可靠交互以及资源管理等常见挑战。
这个项目的核心构建于强大的 Apache Flink 之上,提供了一种新的抽象方式来构建分布式应用程序和服务。
核心概念
抽象层
Stateful Functions 应用由以下核心组件组成:
- 状态函数:构成应用的基本构建块,它们是通过消息调用的小型逻辑单元。每个函数作为可唯一寻址的虚拟实例存在,由类型和内部独一无二的 ID(字符串)定义。
- 状态:每个虚拟函数实例都有其私有本地状态,可以通过局部变量访问。
- 入口(Ingresses)与出口(Egresses):入口用于事件最初进入应用,而出口则标准化了事件离开应用的方式。路由器(Routers)负责决定事件最初应由哪个功能实例处理。
模块化与可扩展性
模块 是向 Stateful Functions 应用添加基础构建块(如入口、出口、路由器和状态函数)的入口点。一个应用可以结合多个模块,每个模块贡献整体应用的一部分。这使得不同部分的应用可以由不同的模块贡献,促进了团队间的独立工作,但所有部分仍然部署在同一更大的应用上。
开始使用
获取与构建
需求
- Docker
- Maven 3.5.x 或以上
- Java 8 或以上
- 克隆项目并安装依赖:
git clone <repository-url>
mvn clean install
- 构建 Docker 基础镜像(如果计划使用 Docker 部署):
./tools/docker/build-stateful-functions.sh
运行示例
尝试运行预先存在的 Greeter 示例:
cd statefun-examples/statefun-greeter-example
docker-compose build
docker-compose up
发送消息到 names 主题并查看 greetings 的响应以了解示例如何工作。
项目设置
创建一个简单的 Stateful Functions 应用,使用 Maven 快速启动模板:
mvn archetype:generate \
-DarchetypeGroupId=org.apache.flink \
-DarchetypeArtifactId=statefun-quickstart \
-DarchetypeVersion=1.1-SNAPSHOT
然后导入你的IDE进行开发和测试。
IDE 中运行
参考 Harness 示例了解如何在 IDE 中直接运行应用。
部署应用
你可以将 Stateful Functions 应用打包为独立应用或 Flink 作业提交给 Flink 集群。
使用 Docker 镜像部署
创建一个 Dockerfile 来构建应用镜像。
将应用作为 Flink 任务部署
只需简单地将 statefun-flink-distribution 添加为你的应用依赖即可。
参与贡献
如果你对 Stateful Functions 感兴趣或者对其增强有兴趣,欢迎参与进来!你可以从 Apache Flink 网站 学习如何贡献,并在 Jira 上查看 "Stateful Functions" 组件中的社区工作进展。
许可证
本仓库代码遵循 Apache Software License 2 许可。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00