HIP项目中主机内存管理的正确使用方式
2025-06-16 17:30:23作者:盛欣凯Ernestine
在ROCm生态系统中的HIP项目中,主机内存管理是一个需要特别注意的技术点。最近发现官方文档中关于"Pinned memory"(固定内存)的示例代码存在一个严重的内存管理错误,这可能导致程序出现段错误(segmentation fault)。
固定内存的基本概念
固定内存(Pinned Memory)是指被锁定在物理内存中的主机内存,不会被操作系统交换到磁盘上。这种内存对于GPU加速计算特别重要,因为它可以实现:
- 更高的主机与设备间数据传输带宽
- 异步数据传输能力
- 零拷贝内存访问(在某些架构上)
文档中的错误示例
在HIP的官方文档中,给出了一个使用固定内存的示例代码,但在释放内存时使用了错误的释放方式:
// 错误的释放方式
delete[] host_input;
delete[] host_output;
这种释放方式会导致段错误,因为这些内存不是通过常规的new
或malloc
分配的,而是通过HIP特定的APIhipHostMalloc()
分配的。
正确的内存管理方式
正确的做法是使用HIP提供的专用内存释放函数hipHostFree()
:
// 正确的释放方式
HIP_CHECK(hipHostFree(host_input));
HIP_CHECK(hipHostFree(host_output));
这里还使用了HIP_CHECK
宏来检查HIP API调用的返回值,确保操作成功,这是一种良好的编程实践。
内存分配与释放的配对原则
在HIP编程中,内存管理必须遵循严格的配对原则:
hipHostMalloc()
分配的内存必须用hipHostFree()
释放hipMalloc()
分配的设备内存必须用hipFree()
释放- 常规
new
或malloc
分配的内存才使用delete
或free
释放
违反这些配对原则会导致不可预测的行为,包括段错误、内存泄漏或其他运行时错误。
固定内存的最佳实践
除了正确的内存释放外,使用固定内存时还应注意以下几点:
- 固定内存分配比常规内存分配更耗时,应避免频繁分配释放
- 固定内存会减少系统可用物理内存,不应过度使用
- 在数据传输频繁的场景下使用固定内存效果最佳
- 可以使用
hipHostRegister()
将已分配的内存区域转换为固定内存
总结
HIP项目中的内存管理需要特别注意分配和释放方式的匹配。对于固定内存,必须使用HIP提供的专用API进行管理。开发者应养成良好的内存管理习惯,确保每种内存分配方式都有对应的正确释放方式,这样才能编写出稳定高效的GPU加速程序。
这个案例也提醒我们,即使是官方文档也可能存在错误,开发者在参考文档时也应保持批判性思维,结合自己的理解和实践经验来编写代码。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0119AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287