Trafilatura项目中实现多URL下载超时控制的技术方案
2025-06-15 16:22:34作者:滑思眉Philip
背景介绍
Trafilatura是一个强大的Python库,主要用于从网页中提取结构化内容。在实际应用中,我们经常需要批量下载多个网页内容,同时需要对每个下载请求设置合理的超时时间,以避免因网络问题导致程序长时间阻塞。
单URL下载的超时控制
在Trafilatura中,对单个URL设置下载超时相对简单。开发者可以通过配置对象来设置DOWNLOAD_TIMEOUT参数:
config = use_config()
config.set("DEFAULT", "DOWNLOAD_TIMEOUT", "5") # 设置5秒超时
downloaded = fetch_url(url, config=config)
这种方法适用于单个URL的下载场景,通过配置对象可以灵活控制各种下载参数。
多URL批量下载的挑战
当需要批量下载多个URL时,Trafilatura提供了高效的并发下载机制。核心流程包括:
- 将URL列表转换为内部存储格式
- 使用缓冲机制分批处理URL
- 多线程并发下载
然而,在之前的版本中,这种批量下载方式缺乏直接设置超时时间的接口,这给需要精确控制下载行为的开发者带来了不便。
解决方案
最新版本的Trafilatura已经解决了这个问题,现在可以通过以下方式为批量下载设置超时:
from trafilatura.downloads import add_to_compressed_dict, buffered_downloads, load_download_buffer
from trafilatura.settings import use_config
# 配置下载参数
config = use_config()
config.set("DEFAULT", "DOWNLOAD_TIMEOUT", "5") # 设置5秒超时
# URL列表
mylist = ['https://www.example.org', 'https://www.httpbin.org/html']
threads = 4 # 并发线程数
url_store = add_to_compressed_dict(mylist)
while url_store.done is False:
bufferlist, url_store = load_download_buffer(url_store, sleep_time=5)
# 传入config参数设置超时
for url, result in buffered_downloads(bufferlist, threads, config=config):
print(url)
print(result)
技术实现原理
- 配置传递机制:现在buffered_downloads函数支持接收config参数,该参数会传递给底层的下载函数
- 线程安全:在多线程环境下,配置参数会被安全地传递给每个下载线程
- 超时处理:当下载超过指定时间时,请求会被自动终止,避免无限等待
最佳实践建议
- 根据目标网站的响应速度和网络状况合理设置超时时间
- 对于不稳定的网络环境,建议设置稍长的超时时间(如10-15秒)
- 结合sleep_time参数控制请求频率,避免对目标服务器造成过大压力
- 考虑实现重试机制,对于超时的请求可以进行有限次数的重试
总结
Trafilatura通过增强批量下载接口的配置能力,使开发者能够更精细地控制下载行为。超时设置的加入大大提高了在复杂网络环境下批量采集网页内容的可靠性。开发者现在可以更自信地构建稳定的网页内容采集系统,而不用担心因个别慢响应或无响应的URL导致整个采集过程停滞。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
28