OpenTitan项目中DICE证书创建过程中的潜在启动循环问题分析
问题背景
在OpenTitan项目的earlgrey_1.0.0版本芯片中,发现了一个与安全启动相关的严重问题。该问题表现为芯片在某些情况下会陷入启动循环(boot-loop),导致设备无法正常启动。经过深入调查,发现问题根源在于DICE(Device Identifier Composition Engine)证书创建过程中的异常处理机制存在缺陷。
问题现象
工程师在实际部署中观察到了两种不同的异常表现:
- 
ROM层启动循环:表面上看是ROM层的启动循环,实际上是由于不可变区段(immutable section)配置不当导致的。芯片报告的错误代码为02495202(非法指令)。 
- 
ROM_EXT层启动循环:在ROM_EXT层出现的启动循环,芯片尝试启动所有者固件后报告错误代码0050540d(kErrorPersoTlvInternal)。 
根本原因分析
通过对闪存内容的检查,发现问题的直接原因是DiceCerts信息页被擦除或部分编程。具体分析如下:
- 
证书解析容错性不足: perso_tlv_get_cert_obj函数在遇到闪存页被擦除或部分编程时,会返回kErrorPersoTlvInternal错误。当前实现中,当检测到长度值为0xFFF(全1)时,会认为数据过长而报错。
- 
错误处理策略不当: dice_chain_load_cert_obj函数对错误的处理不够灵活,没有将perso_tlv_get_cert_obj的所有错误都视为"未找到"情况处理。
- 
完整性校验缺失:与BootData和OwnerPage页面不同,DiceCerts页面缺少完整性校验机制(如SHA256或KMAC)。当设备在写入证书页面时意外重启,会导致页面数据不完整或损坏。 
技术影响
在观察到的第二种情况中,设备出现了部分CDI_0证书损坏的情况。由于当前实现中没有对CDI证书进行完整验证(出于性能考虑),如果仅修复CDI_1证书而CDI_0证书保持损坏状态,问题将持续存在直到ROM_EXT更新。
对于UDS证书页面,情况更为复杂,因为UDS证书是在制造过程中创建并注入的,无法在设备端重新生成。当前已经存在一些没有完整性校验方案的芯片。
解决方案
针对这一问题,OpenTitan团队提出了以下改进措施:
- 
增强错误恢复能力:改进 dice_chain_load_cert_obj函数的容错性,使其能够更合理地处理各种错误情况。
- 
引入完整性校验:为证书页面添加完整性校验机制(如SHA256),确保数据完整性。 
- 
CDI页面处理优化:在加载CDI页面时先验证完整性,如果校验失败则重新生成两个CDI证书。 
- 
UDS页面处理优化:在加载UDS页面时检查完整性,但仅标记校验失败而不尝试修复(因为无法重新生成)。 
- 
测试增强:考虑创建损坏证书页面的测试用例,提高测试覆盖率。 
总结
这一问题的解决不仅修复了现有的启动循环问题,更重要的是增强了OpenTitan安全启动机制的健壮性。通过引入完整性校验和优化错误处理逻辑,系统能够更好地应对意外断电等异常情况,确保设备在各种条件下都能安全可靠地启动。这对于OpenTitan作为开源安全芯片项目来说至关重要,特别是在关键基础设施和高安全性应用场景中。
 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00 MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选
 docs
docs kernel
kernel pytorch
pytorch ops-math
ops-math flutter_flutter
flutter_flutter ohos_react_native
ohos_react_native cangjie_compiler
cangjie_compiler RuoYi-Vue3
RuoYi-Vue3 cangjie_test
cangjie_test Cangjie-Examples
Cangjie-Examples