Optax项目中softmax交叉熵损失函数对负无穷大logits的处理问题分析
2025-07-07 15:40:37作者:戚魁泉Nursing
在深度学习框架中,交叉熵损失函数是最基础且重要的组件之一。本文将深入分析Optax项目中softmax交叉熵损失函数在处理负无穷大logits时的一个边界条件问题,探讨其技术背景、影响范围以及解决方案。
问题背景
在机器学习实践中,softmax交叉熵损失函数广泛应用于多分类任务。其数学表达式为:
H(p,q) = -∑ p_i log(q_i)
其中p是真实标签分布,q是预测概率分布。在Optax的实现中,当某些logits为负无穷大时,若对应标签为0,会出现数值计算异常。
问题现象
当输入logits数组包含负无穷大值且对应标签为0时,Optax的原始实现会返回NaN,而理论上应该返回0。这是因为:
- 负无穷大logit经过softmax后对应位置概率为0
 - 0乘以log(0)在数学上应视为0(根据测度论中∞×0=0的约定)
 - 但数值计算中log(0)为负无穷大,导致0×(-∞)产生NaN
 
技术分析
Optax原始实现直接使用log_softmax后与标签相乘,没有特殊处理这种边界情况。而正确的处理方式应该考虑:
- 当标签为0时,无论对应logit值如何,该项贡献应为0
 - 需要保持梯度计算的正确性
 - 数值稳定性是首要考虑因素
 
解决方案比较
经过讨论和实验,提出了几种改进方案:
- xlogy方案:直接使用scipy.special.xlogy函数,它专门处理x*log(y)在x=0时的边界情况
 - 条件归零方案:显式检测标签为0的情况并置零
 - logsumexp方案:通过数学变形避免显式计算softmax
 
最终确定的最佳方案是条件归零与负无穷检测结合的方式:
def softmax_cross_entropy(logits, labels):
    log_probs = nn.log_softmax(logits)
    force_zero = (labels == 0) & jnp.isneginf(log_probs)
    x = jnp.where(force_zero, 0, labels * log_probs)
    return -x.sum()
实现考量
在实际实现中还需要考虑:
- 梯度正确性:确保自动微分结果与数学期望一致
 - 数值稳定性:避免在非边界情况下引入额外计算开销
 - API兼容性:保持函数签名和行为与现有代码的兼容性
 - 测试覆盖:增加对边界条件的单元测试
 
工程实践建议
在实际项目中使用softmax交叉熵时:
- 对于有明确mask需求的场景(如RL中的动作mask),建议显式处理logits而非依赖损失函数的边界行为
 - 监控训练过程中是否出现NaN,这可能是数值稳定性问题的信号
 - 考虑使用更稳定的交叉熵实现变种,如label smoothing
 
总结
Optax项目中softmax交叉熵对负无穷大logits的处理问题展示了深度学习框架中数值计算边界条件的重要性。通过深入分析数学原理和计算特性,我们找到了既保持数值正确性又不影响性能的解决方案。这类问题的解决过程也体现了优秀机器学习框架需要在数学严谨性和工程实用性之间取得平衡。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445