Qwen2.5-VL项目中视觉-语言模型并行训练负载均衡分析
2025-05-23 07:44:09作者:幸俭卉
在Qwen2.5-VL这类视觉-语言多模态大模型训练过程中,采用流水线并行(Pipeline Parallelism, PP)策略时,如何合理切分模型层数以实现计算负载均衡是一个关键问题。本文将深入分析该项目的并行训练策略及其负载均衡机制。
视觉-语言模型的并行切分策略
Qwen2.5-VL采用了将视觉Transformer(ViT)和部分LLM层合并切分的策略。具体来说:
- 第一阶段(stage 1)包含ViT模型和部分LLM层
- 剩余LLM层均匀分布在其他阶段
这种设计主要基于以下考虑:
- ViT模型参数量相对较小(约600M)
- LLM部分参数量占主导(72B或7B规模)
- 计算量主要集中在LLM部分
训练数据的预处理与负载均衡
项目团队通过以下预处理手段确保训练过程中的负载均衡:
-
序列长度标准化:所有训练样本在预处理阶段被统一打包成固定长度(如8K tokens)的序列,这使得LLM层的计算量保持稳定。
-
动态样本调整:每个序列中包含的样本数量会根据输入数据特性自动调整:
- 对于较大图像,单个序列包含的样本数量较少
- 对于较小图像,单个序列可容纳更多样本
这种动态调整机制确保了ViT部分的计算量不会因为输入图像尺寸变化而产生剧烈波动。
计算负载分布分析
在Qwen2.5-VL的架构中:
-
ViT部分虽然处理视觉输入,但其参数量仅600M左右,相比LLM部分的72B或7B规模显得较小。
-
计算瓶颈主要出现在LLM部分,因此项目团队通过精细调整stage 1中包含的LLM层数,可以有效控制流水线中的气泡(bubble)问题。
-
即使面对视频等多帧输入,由于序列打包机制的存在,计算负载仍能保持相对均衡。
优化建议与实践经验
对于类似的多模态大模型训练,建议:
-
在模型切分时,应充分考虑各组件参数量级差异,避免将计算密集部分集中到单一阶段。
-
数据预处理阶段的序列打包策略对负载均衡至关重要,需要根据实际数据特性精心设计。
-
对于ViT+LLM架构,保持ViT部分相对轻量是确保训练效率的关键设计选择。
Qwen2.5-VL项目的实践表明,通过合理的模型切分和数据预处理策略,即使面对变长视觉输入,也能在流水线并行训练中保持良好的负载均衡。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
226
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868