Qwen2.5-VL项目中视觉-语言模型并行训练负载均衡分析
2025-05-23 09:54:58作者:幸俭卉
在Qwen2.5-VL这类视觉-语言多模态大模型训练过程中,采用流水线并行(Pipeline Parallelism, PP)策略时,如何合理切分模型层数以实现计算负载均衡是一个关键问题。本文将深入分析该项目的并行训练策略及其负载均衡机制。
视觉-语言模型的并行切分策略
Qwen2.5-VL采用了将视觉Transformer(ViT)和部分LLM层合并切分的策略。具体来说:
- 第一阶段(stage 1)包含ViT模型和部分LLM层
- 剩余LLM层均匀分布在其他阶段
这种设计主要基于以下考虑:
- ViT模型参数量相对较小(约600M)
- LLM部分参数量占主导(72B或7B规模)
- 计算量主要集中在LLM部分
训练数据的预处理与负载均衡
项目团队通过以下预处理手段确保训练过程中的负载均衡:
-
序列长度标准化:所有训练样本在预处理阶段被统一打包成固定长度(如8K tokens)的序列,这使得LLM层的计算量保持稳定。
-
动态样本调整:每个序列中包含的样本数量会根据输入数据特性自动调整:
- 对于较大图像,单个序列包含的样本数量较少
- 对于较小图像,单个序列可容纳更多样本
这种动态调整机制确保了ViT部分的计算量不会因为输入图像尺寸变化而产生剧烈波动。
计算负载分布分析
在Qwen2.5-VL的架构中:
-
ViT部分虽然处理视觉输入,但其参数量仅600M左右,相比LLM部分的72B或7B规模显得较小。
-
计算瓶颈主要出现在LLM部分,因此项目团队通过精细调整stage 1中包含的LLM层数,可以有效控制流水线中的气泡(bubble)问题。
-
即使面对视频等多帧输入,由于序列打包机制的存在,计算负载仍能保持相对均衡。
优化建议与实践经验
对于类似的多模态大模型训练,建议:
-
在模型切分时,应充分考虑各组件参数量级差异,避免将计算密集部分集中到单一阶段。
-
数据预处理阶段的序列打包策略对负载均衡至关重要,需要根据实际数据特性精心设计。
-
对于ViT+LLM架构,保持ViT部分相对轻量是确保训练效率的关键设计选择。
Qwen2.5-VL项目的实践表明,通过合理的模型切分和数据预处理策略,即使面对变长视觉输入,也能在流水线并行训练中保持良好的负载均衡。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
235
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705