Swift Composable Architecture 中父子 Reducer 交互的注意事项
概述
在使用 Swift Composable Architecture (TCA) 开发 iOS 应用时,我们经常会遇到需要在父 Reducer 中直接调用子 Reducer 操作的场景。本文将深入探讨这种交互方式可能带来的问题,特别是关于 Effect 取消的注意事项。
问题场景
在 TCA 架构中,当父 Reducer 需要触发子 Reducer 的某个 Action 时,开发者可能会选择直接调用子 Reducer 的 reduce
方法,而不是通过标准的 Effect.send
方式。这种看似便捷的做法实际上会带来 Effect 管理的问题。
典型代码示例
// 父 Reducer 中直接调用子 Reducer
return Child().reduce(into: &state.childs[0], action: .refresh)
.map { [id = state.childs[0].id] in
Action.childs(.element(id: id, action: $0))
}
问题分析
这种直接调用方式会绕过 TCA 的核心机制 forEach
/ifLet
操作符,而这些操作符正是负责处理 Effect 取消逻辑的关键部分。因此,当在测试环境中运行时,会出现 Effect 未被正确取消的错误提示:
failed - An effect returned for this action is still running. It must complete before the end of the test.
解决方案
推荐方案:使用 Effect.send
最可靠的方式是使用标准的 Effect.send
机制来触发子 Reducer 的 Action:
return .send(.childs(.element(id: state.childs[0].id, action: .refresh)))
这种方式能够确保所有 Effect 管理机制正常工作,包括测试环境中的自动取消。
替代方案:保持操作符链
如果确实需要直接操作,可以保持操作符链的完整性:
return EmptyReducer()
.forEach(\.childs, action: \.childs) {
Child()
}
.reduce(into: &state.childs, action: .childs(.element(id: ..., action: .refresh))
最佳实践建议
-
逻辑下沉:考虑将刷新逻辑放在子 Reducer 的
onAppear
Action 中处理,这样更符合单一职责原则。 -
避免直接调用:尽量避免直接调用子 Reducer 的方法,保持通过 Action 进行通信的标准模式。
-
测试考虑:在设计 Reducer 交互时,始终考虑测试场景下的行为,确保 Effect 能够被正确管理和取消。
架构演进
TCA 团队正在计划对 Reducer 的工作方式进行更新,未来版本可能会提供更优雅的方式来处理这类父子 Reducer 交互的场景。开发者应关注官方更新,及时调整实现方式。
总结
在 TCA 架构中,父子 Reducer 的交互应当遵循框架设计的通信机制,避免绕过核心操作符直接调用。这不仅关系到 Effect 的正确管理,也影响到测试的可靠性和代码的可维护性。通过标准化的 Action 通信方式,可以确保应用状态的变更和副作用处理始终处于可控状态。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









