Kubernetes Metrics Server在1.24+版本中的ServiceAccount令牌问题解析
问题背景
在Kubernetes 1.24及更高版本中,Metrics Server组件在默认安装后出现无法采集kubelet指标的问题。这一问题主要表现为Metrics Server持续收到403 Forbidden错误,导致无法获取节点指标数据。
根本原因分析
问题的核心在于Kubernetes 1.24版本引入的一个重要安全变更:ServiceAccount的令牌/密钥不再自动创建。这一变更属于Kubernetes对安全模型的改进,旨在减少默认情况下不必要的长期凭证。
在Metrics Server的场景中,组件需要访问kubelet的10250端口来获取节点指标。在1.24之前版本中,系统会自动为Metrics Server的ServiceAccount创建令牌,使得组件能够通过身份验证。但在新版本中,这一自动机制被移除,导致Metrics Server无法获取有效的身份凭证。
技术细节
当Metrics Server尝试访问kubelet API时,会经历以下流程:
- Metrics Server使用其ServiceAccount的身份发起请求
- 由于缺少有效的令牌,请求无法通过身份验证
- kubelet返回403 Forbidden响应
- Metrics Server记录错误日志并无法获取指标数据
错误日志中通常会显示类似以下内容:
Failed to scrape node err="request failed, status: \"403 Forbidden\"" node="node-name"
解决方案
推荐解决方案
-
手动创建ServiceAccount令牌: 使用kubectl创建Secret资源并关联到Metrics Server的ServiceAccount:
apiVersion: v1 kind: Secret metadata: name: metrics-server-token annotations: kubernetes.io/service-account.name: metrics-server type: kubernetes.io/service-account-token -
更新Metrics Server的RBAC配置: 确保ClusterRoleBinding正确关联了Metrics Server的ServiceAccount,并具有足够的权限。
临时解决方案(不推荐)
修改kubelet的授权模式为AlwaysAllow可以临时解决问题,但会带来严重的安全隐患:
--authorization-mode=AlwaysAllow
这种方法虽然能让Metrics Server工作,但会完全禁用kubelet API的身份验证,使集群面临安全风险。
最佳实践建议
- 对于生产环境,始终使用手动创建的ServiceAccount令牌
- 定期轮换这些令牌以提高安全性
- 考虑使用TokenRequest API而不是静态令牌
- 监控Metrics Server的运行状态,确保指标采集正常工作
版本兼容性说明
这一问题主要影响Kubernetes 1.24及以上版本。对于使用较新Kubernetes版本的用户,需要特别注意这一变更,并在部署Metrics Server时采取相应的配置措施。
总结
Kubernetes 1.24的安全改进虽然增加了初始配置的复杂性,但提高了集群的整体安全性。理解并正确处理ServiceAccount令牌的创建和管理,是确保Metrics Server等组件在新版本Kubernetes中正常运行的关键。建议管理员在升级集群时,仔细审查所有依赖ServiceAccount令牌的组件配置,确保它们符合新的安全模型要求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00