Async-profiler 在JDK 25中cstack=vm模式的问题分析与修复
问题背景
Async-profiler是一款广受欢迎的Java性能分析工具,它能够通过低开销的方式采集Java应用程序的性能数据。其中,cstack=vm模式是Async-profiler提供的一种特殊的调用栈采集方式,它通过直接访问JVM内部数据结构来获取调用栈信息,这种方式相比其他方法具有更高的精度和更低的性能开销。
问题现象
在JDK 25的主线版本中,当用户尝试使用cstack=vm模式进行性能分析时,Async-profiler会快速失败并显示错误信息"VMStructs stack walking is not supported on this JVM/platform"。这个问题是由于JDK内部的一个变更引起的。
根本原因分析
经过调查发现,这个问题源于JDK-8343789这个变更。该变更修改了VMStructs::_metadata_offset字段的位置和结构。VMStructs是JVM内部用于暴露关键数据结构偏移量的机制,Async-profiler依赖这些信息来正确解析JVM内部状态。
具体来说,Async-profiler在初始化时会检查一系列必要的偏移量字段,其中包括_nmethod_metadata_offset。在JDK 25中,由于相关内部结构的变更,这个检查无法通过,导致工具认为当前JVM/平台不支持VMStructs栈遍历。
临时解决方案
在官方修复之前,可以通过修改Async-profiler的源代码来绕过这个检查。具体做法是注释掉对_nmethod_metadata_offset字段的验证。不过需要注意的是,这种修改会导致部分调用栈信息显示为"[unknown]",因为缺少了关键的元数据信息。
官方修复
Async-profiler开发团队已经确认了这个问题,并在4.0版本发布后迅速提供了修复方案。修复的核心思路是适应JDK 25中VMStructs结构的新变化,确保工具能够正确解析新的内部数据结构布局。
验证结果
经过验证,修复后的Async-profiler能够在JDK 25主线版本上正常工作,cstack=vm模式的功能已经恢复。这对于依赖高精度调用栈信息的性能分析场景尤为重要。
技术启示
这个案例展示了性能分析工具与JVM内部实现之间的紧密耦合关系。随着JVM的持续演进,内部数据结构可能会发生变化,这就要求性能工具也需要相应地进行适配。对于性能分析工具的开发者来说,需要密切关注JVM的变化,并及时调整工具的实现。
对于用户来说,当遇到类似问题时,可以尝试以下步骤:
- 确认使用的Async-profiler版本是否支持当前的JDK版本
 - 检查是否有已知的兼容性问题
 - 考虑使用其他cstack模式作为临时替代方案
 - 及时升级到修复后的版本
 
Async-profiler团队对这类问题的快速响应体现了该项目对兼容性和用户体验的重视,这也是该项目能够成为Java性能分析领域重要工具的原因之一。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00