entcache 开源项目最佳实践
2025-05-28 03:49:11作者:咎竹峻Karen
1. 项目介绍
entcache 是一个为 ent 数据库模型提供缓存功能的实验性驱动。它支持多种存储选项,包括基于 context.Context 的缓存、嵌入式驱动级别的缓存、远程缓存(例如 Redis),以及缓存层次结构(多级缓存)。entcache 的目标是减少数据库的查询次数,提高应用性能。
2. 项目快速启动
首先,您需要通过 go get 命令安装 entcache 包:
go get ariga.io/entcache
接下来,您需要打开数据库连接,并使用 entcache 装饰您的 sql.Driver:
db, err := sql.Open(dialect.MySQL, "user:password@/dbname")
if err != nil {
log.Fatal("opening database", err)
}
drv := entcache.NewDriver(db)
client := ent.NewClient(ent.Driver(drv))
在进行模式迁移时,您可能希望跳过缓存层,可以这样做:
if err := client.Schema.Create(entcache.Skip(ctx)); err != nil {
log.Fatal("running schema migration", err)
}
之后,您就可以执行查询了。以下是一个查询用户的例子,第二次查询将从缓存中获取结果:
if u, err := client.User.Get(ctx, id); err != nil {
log.Fatal("querying user", err)
}
请注意,在使用 entcache 之前,您需要仔细选择缓存存储。
3. 应用案例和最佳实践
缓存层次结构
多级缓存允许以层次结构的方式组织缓存。例如,一个两级缓存可能包括内存中的 LRU 缓存和由 Redis 支持的远程缓存。
// 配置 LRU 缓存和远程缓存的组合
cache := entcache.NewMultiLevelCache(
entcache.NewLRUCache(100), // LRU 缓存
entcache.NewRedisCache(redisClient), // 远程 Redis 缓存
)
drv := entcache.NewDriver(db, entcache.WithCacheStore(cache))
client := ent.NewClient(ent.Driver(drv))
在 GraphQL 中使用
如果您的应用程序使用 GraphQL,entcache 可以通过包装请求的 context.Context 来减少不必要的数据库查询。
srv.AroundResponses(func(ctx context.Context, next graphql.ResponseHandler) *graphql.Response {
if op := graphql.GetOperationContext(ctx).Operation; op != nil && op.Operation == ast.Query {
ctx = entcache.NewContext(ctx)
}
return next(ctx)
})
4. 典型生态项目
entcache 可以与 ent 框架无缝集成,ent 是一个用于 Go 的数据模型和 ORM 工具,它可以生成代码以减少样板代码,并简化数据库交互。
entcache 的生态项目可能包括:
ent:ent 是一个强大的数据模型框架,用于 Go,它为数据库交互提供了一套丰富的 API。redis:Redis 是一个开源的 in-memory 数据结构存储,用作数据库、缓存和消息代理。- 其他缓存解决方案:如 Memcached、Amazon ElastiCache 等,可以与 entcache 集成以提供更多缓存选项。
通过遵循上述最佳实践,您可以有效地集成 entcache 到您的 Go 项目中,并充分利用其缓存功能来提高性能。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895