nnUNet项目中使用新版预设训练计划的实践指南
2025-06-01 08:59:54作者:齐冠琰
前言
在医学图像分割领域,nnUNet作为一款优秀的开源框架,其自动适应不同数据集的能力备受推崇。近期项目更新了训练计划预设方案,引入了基于残差编码器的新架构选项,为模型性能带来了显著提升。本文将详细介绍如何正确使用新版训练计划,并解释其技术优势。
新旧训练计划对比
nnUNet的传统训练计划标识符为nnUNetPlans
,而新版提供了三种基于残差编码器的预设方案:
- 小型架构 (ResEncUNetS)
- 中型架构 (ResEncUNetM)
- 大型架构 (ResEncUNetL)
这些新架构不仅优化了内存使用效率,还能根据GPU显存容量自动调整网络参数,同时提供了更好的分割性能。
新版训练计划使用步骤
第一步:数据预处理与计划生成
使用以下命令生成新版训练计划:
nnUNetv2_plan_and_preprocess -d 数据集ID --verify_dataset_integrity -pl nnUNetPlannerResEncM
其中:
数据集ID
替换为你的实际数据集编号nnUNetPlannerResEncM
表示选择中型残差编码器预设(可根据需求改为S或L)
第二步:模型训练
生成计划后,使用对应的计划标识符启动训练:
nnUNetv2_train 数据集ID 3d_fullres all -p nnUNetResEncUNetMPlans
关键参数说明:
3d_fullres
表示使用3D全分辨率配置all
表示在所有折数(fold)上训练-p
参数指定使用新版计划标识符
常见问题解决
计划标识符不生效问题
部分用户反馈即使修改了代码中的plans_identifier
参数,系统仍提示使用旧版计划。这是因为:
- 训练脚本会检查计划标识符是否为
nnUNetPlans
- 当检测到旧标识符时,会输出警告信息
解决方案是确保在训练命令中明确指定新版计划标识符,而非仅修改代码默认值。
技术优势分析
新版残差编码器架构相比传统方案具有以下优势:
- 显存优化:自动适配不同GPU的显存容量
- 性能提升:残差连接设计改善了梯度流动
- 灵活性:提供S/M/L三种规模满足不同需求
- 自动化:保持nnUNet"开箱即用"的特性
最佳实践建议
- 对于显存有限的GPU(如11GB),建议从ResEncUNetS开始尝试
- 主流GPU(如24GB)可使用ResEncUNetM获得更好性能
- 超大显存设备(如48GB+)可考虑ResEncUNetL
- 训练前务必验证数据集完整性(--verify_dataset_integrity)
结语
nnUNet的新版训练计划为医学图像分割任务提供了更强大的工具集。通过合理选择残差编码器规模,用户可以在有限硬件资源下获得更优的分割性能。建议新项目优先考虑使用新版预设方案,以获得更好的模型表现和训练效率。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0362Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
192
2.15 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
969
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.35 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
205
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17