Diffusers项目中HunyuanVideoPipeline生成NaN问题的分析与解决
2025-05-06 16:03:16作者:廉彬冶Miranda
问题背景
在Diffusers项目的实际应用中,用户报告了一个关键问题:当使用HunyuanVideoPipeline生成视频内容时,输出结果中出现了NaN(非数值)值。这个问题在调用diffusers.utils.export_to_video()函数时尤为明显,系统会抛出警告信息"invalid value encountered in cast",表明在将图像数据转换为uint8类型时遇到了无效值。
问题表现
通过深入分析,我们发现这个问题在多种硬件配置和软件环境下都会出现:
- 在AMD MI300X GPU上运行时,无论使用PyTorch 2.5.1还是2.6.0版本,都会产生NaN输出
- 在CUDA环境下,某些PyTorch版本(如2.4.0)也会出现类似问题
- 问题表现为最终生成的视频内容全黑或包含无效数据
技术分析
经过开发团队的深入调查,发现问题根源在于Transformer模型中的注意力掩码(attention mask)处理机制。原始实现中存在两个关键缺陷:
- 注意力掩码的维度设计不合理,导致在某些情况下计算异常
- 掩码生成逻辑不够健壮,容易在特定条件下产生无效值
具体来说,原始代码创建了一个形状为[batch_size, sequence_length, sequence_length]的布尔类型注意力掩码,这种设计不仅计算效率低,而且在某些边缘情况下可能导致数值不稳定。
解决方案
开发团队提出了一个优雅的解决方案,主要修改包括:
- 简化注意力掩码的维度,从三维[batch_size, N, N]改为二维[batch_size, N]
- 优化掩码生成逻辑,确保在所有情况下都能产生有效值
- 增强数值稳定性检查,防止NaN值传播
修改后的注意力掩码处理代码如下:
attention_mask = torch.zeros(
batch_size, sequence_length, device=hidden_states.device, dtype=torch.bool
) # 从[B, N, N]改为[B, N]
effective_condition_sequence_length = encoder_attention_mask.sum(dim=1, dtype=torch.int)
effective_sequence_length = latent_sequence_length + effective_condition_sequence_length
for i in range(batch_size):
attention_mask[i, : effective_sequence_length[i]] = True
attention_mask = attention_mask.unsqueeze(1) # 最终形状为[B, 1, N]
验证与效果
该解决方案经过严格测试,验证了以下优势:
- 兼容性:在PyTorch 2.4.1到2.5.1版本上均能正常工作
- 性能:相比原始实现有约7%的性能提升(从4.16s/it降到3.89s/it)
- 稳定性:彻底解决了NaN值问题,确保输出质量
最佳实践建议
基于此次问题的解决经验,我们建议用户:
- 确保使用最新版本的Diffusers库
- 对于视频生成任务,推荐使用PyTorch 2.5.1或更高版本
- 在数据处理管道中加入NaN检查机制,如下例:
def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
# 添加NaN检查
if np.any(np.isnan(images)):
raise ValueError("图像数据包含NaN值")
if np.any(np.isinf(images)):
raise ValueError("图像数据包含无限值")
# 其余处理逻辑...
总结
此次HunyuanVideoPipeline生成NaN问题的解决,不仅修复了一个关键缺陷,还优化了模型的运行效率。这体现了Diffusers项目团队对代码质量的严格要求和持续改进的精神。对于深度学习开发者而言,这也提醒我们在设计模型时需要考虑数值稳定性问题,特别是在处理注意力机制等复杂结构时。
建议所有使用HunyuanVideoPipeline的用户更新到包含此修复的版本,以获得更稳定、高效的视频生成体验。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1