Diffusers项目中HunyuanVideoPipeline生成NaN问题的分析与解决
2025-05-06 07:16:24作者:廉彬冶Miranda
问题背景
在Diffusers项目的实际应用中,用户报告了一个关键问题:当使用HunyuanVideoPipeline生成视频内容时,输出结果中出现了NaN(非数值)值。这个问题在调用diffusers.utils.export_to_video()函数时尤为明显,系统会抛出警告信息"invalid value encountered in cast",表明在将图像数据转换为uint8类型时遇到了无效值。
问题表现
通过深入分析,我们发现这个问题在多种硬件配置和软件环境下都会出现:
- 在AMD MI300X GPU上运行时,无论使用PyTorch 2.5.1还是2.6.0版本,都会产生NaN输出
- 在CUDA环境下,某些PyTorch版本(如2.4.0)也会出现类似问题
- 问题表现为最终生成的视频内容全黑或包含无效数据
技术分析
经过开发团队的深入调查,发现问题根源在于Transformer模型中的注意力掩码(attention mask)处理机制。原始实现中存在两个关键缺陷:
- 注意力掩码的维度设计不合理,导致在某些情况下计算异常
- 掩码生成逻辑不够健壮,容易在特定条件下产生无效值
具体来说,原始代码创建了一个形状为[batch_size, sequence_length, sequence_length]的布尔类型注意力掩码,这种设计不仅计算效率低,而且在某些边缘情况下可能导致数值不稳定。
解决方案
开发团队提出了一个优雅的解决方案,主要修改包括:
- 简化注意力掩码的维度,从三维[batch_size, N, N]改为二维[batch_size, N]
- 优化掩码生成逻辑,确保在所有情况下都能产生有效值
- 增强数值稳定性检查,防止NaN值传播
修改后的注意力掩码处理代码如下:
attention_mask = torch.zeros(
batch_size, sequence_length, device=hidden_states.device, dtype=torch.bool
) # 从[B, N, N]改为[B, N]
effective_condition_sequence_length = encoder_attention_mask.sum(dim=1, dtype=torch.int)
effective_sequence_length = latent_sequence_length + effective_condition_sequence_length
for i in range(batch_size):
attention_mask[i, : effective_sequence_length[i]] = True
attention_mask = attention_mask.unsqueeze(1) # 最终形状为[B, 1, N]
验证与效果
该解决方案经过严格测试,验证了以下优势:
- 兼容性:在PyTorch 2.4.1到2.5.1版本上均能正常工作
- 性能:相比原始实现有约7%的性能提升(从4.16s/it降到3.89s/it)
- 稳定性:彻底解决了NaN值问题,确保输出质量
最佳实践建议
基于此次问题的解决经验,我们建议用户:
- 确保使用最新版本的Diffusers库
- 对于视频生成任务,推荐使用PyTorch 2.5.1或更高版本
- 在数据处理管道中加入NaN检查机制,如下例:
def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
# 添加NaN检查
if np.any(np.isnan(images)):
raise ValueError("图像数据包含NaN值")
if np.any(np.isinf(images)):
raise ValueError("图像数据包含无限值")
# 其余处理逻辑...
总结
此次HunyuanVideoPipeline生成NaN问题的解决,不仅修复了一个关键缺陷,还优化了模型的运行效率。这体现了Diffusers项目团队对代码质量的严格要求和持续改进的精神。对于深度学习开发者而言,这也提醒我们在设计模型时需要考虑数值稳定性问题,特别是在处理注意力机制等复杂结构时。
建议所有使用HunyuanVideoPipeline的用户更新到包含此修复的版本,以获得更稳定、高效的视频生成体验。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
447
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
451
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705