Composer分布式训练日志收集方案详解
2025-06-07 13:17:34作者:庞队千Virginia
在分布式深度学习训练场景中,日志收集是一个常见需求。MosaicML Composer框架提供了灵活的日志输出机制,可以帮助开发者高效管理多GPU/多节点训练时的日志信息。
分布式训练日志的挑战
当使用Composer进行多GPU或多节点训练时,默认情况下日志只会从主进程(rank 0)输出。这种设计虽然避免了终端输出混乱,但在调试阶段,开发者往往需要查看所有计算单元的日志信息来定位问题。
Composer的日志重定向方案
Composer提供了命令行参数来灵活控制日志输出:
composer --stdout stdout_{rank}.txt --stderr stderr_{rank}.err train.py
这个命令实现了:
- 将标准输出(stdout)按rank编号分别保存到不同文件
- 将标准错误(stderr)同样按rank分离存储
- 使用{rank}占位符自动生成带rank编号的文件名
执行后会产生类似如下的文件结构:
stdout_0.txt # rank 0的标准输出
stdout_1.txt # rank 1的标准输出
stderr_0.err # rank 0的错误输出
stderr_1.err # rank 1的错误输出
高级应用场景
-
调试模式:当需要检查数据加载、梯度同步等问题时,查看所有rank的日志可以快速定位不一致的环节
-
性能分析:通过对比不同rank的日志时间戳,可以发现负载不均衡等问题
-
错误诊断:当某个rank出现异常时,可以单独检查其错误日志而不受其他进程干扰
最佳实践建议
-
对于长期运行的训练任务,建议定期轮转日志文件以避免单个文件过大
-
在生产环境中,可以考虑结合日志收集系统(如ELK)来自动聚合和分析多rank日志
-
调试完成后,可以恢复默认设置只保留rank 0的日志以减少存储开销
Composer的这种日志设计既保持了生产环境的整洁性,又为开发者提供了充分的调试灵活性,是分布式训练工具链中一个实用而贴心的功能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136