FunAudioLLM/SenseVoice项目GPU显存溢出问题分析与解决方案
2025-06-07 01:36:08作者:平淮齐Percy
问题背景
在FunAudioLLM/SenseVoice项目的实际应用中,用户在使用demo2.py脚本进行时间戳推理时遇到了GPU显存溢出的问题。该问题最初出现在处理客服与用户的对话音频文件时,而原始测试音频则可以正常运行。
错误现象分析
当用户尝试处理较大音频文件时,系统抛出CUDA内存不足错误。具体表现为:
- 尝试分配2.75GiB显存
- GPU总容量23.64GiB,当时可用仅2.48GiB
- PyTorch已分配18.33GiB,保留未分配2.16GiB
- 错误发生在torch.softmax操作期间
技术原因
这种显存溢出问题通常由以下几个因素导致:
- 音频长度因素:较长的音频文件会导致模型需要处理更大的张量,特别是在自注意力机制中,显存需求会呈平方级增长
- 模型架构特性:SenseVoice基于Transformer架构,其自注意力机制在处理长序列时会消耗大量显存
- 批次处理策略:默认配置可能没有针对长音频进行优化
解决方案
经过验证,更新到最新版本的FunASR可以有效解决此问题。新版本可能包含以下优化:
- 内存管理改进:优化了张量分配策略,减少了显存碎片
- 长音频处理优化:实现了更高效的分块处理机制
- 计算图优化:减少了中间变量的显存占用
实践建议
对于仍遇到类似问题的用户,建议采取以下措施:
- 版本升级:确保使用最新版本的FunASR和相关依赖
- 音频预处理:对于超长音频,可考虑先进行适当分割
- 环境配置:设置PYTORCH_CUDA_ALLOC_CONF环境变量为expandable_segments:True
- 显存监控:在处理前监控GPU使用情况,确保有足够资源
总结
FunAudioLLM/SenseVoice项目在处理长音频时可能面临显存挑战,但通过保持软件版本更新和合理配置,可以有效解决这些问题。这反映了深度学习模型在语音处理领域应用时需要特别注意资源管理的特点。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1