Strip-R-CNN 项目亮点解析
2025-06-04 11:14:22作者:羿妍玫Ivan
1. 项目基础介绍
Strip-R-CNN 是一个开源的远程 sensing 目标检测项目,旨在通过大条形卷积来实现高比例目标的检测。该项目基于 MMRotate 框架,使用 PyTorch 1.6+ 作为后端。StripNet 作为 backbone 网络的核心部分,负责提取图像特征,并输出给后续的网络进行处理。在训练过程中,StripNet 使用了 ImageNet 300 个 epoch 的预训练模型作为初始化,从而加快了模型的收敛速度。Strip-R-CNN 在多个数据集上取得了优秀的性能,例如在 DOTA-v1.0 数据集上,其 30M 模型的 mAP 达到了 82.75%,创下了新的记录。
2. 项目代码目录及介绍
- configs: 存放训练和测试的配置文件。
- demo: 存放一些演示代码和示例图片。
- docker: 存放 Docker 镜像构建脚本和相关配置。
- docs: 存放项目文档和 API 参考。
- mmrotate: StripNet 的 backbone 网络代码,基于 MMCV 和 MMDetection 实现。
- requirements: 存放项目依赖的 Python 包列表。
- resources: 存放一些额外的资源,例如预训练模型和数据集。
- tests: 存放测试代码和测试数据。
- tools: 存放一些工具脚本,例如数据集转换脚本和评估脚本。
3. 项目亮点功能拆解
- StripNet: StripNet 作为 backbone 网络的核心部分,使用大条形卷积来提取图像特征,从而更好地捕捉高比例目标的特征。
- Strip R-CNN: Strip R-CNN 是基于 StripNet 构建的目标检测网络,通过分离检测头和定位头,并结合条形卷积,实现了对高比例目标的精确定位。
- 多数据集支持: Strip-R-CNN 在多个数据集上取得了优秀的性能,例如 DOTA, FAIR1M, HRSC2016 和 DIOR 等。
- 模型压缩: Strip-R-CNN 提供了多种模型压缩方案,例如剪枝和量化,可以在保证性能的前提下,降低模型的计算量和存储空间。
4. 项目主要技术亮点拆解
- 大条形卷积: StripNet 使用大条形卷积来提取图像特征,从而更好地捕捉高比例目标的特征。
- 定位头: Strip R-CNN 的定位头使用了条形卷积,从而实现了对高比例目标的精确定位。
- 检测头: Strip R-CNN 的检测头使用了多尺度特征融合和注意力机制,从而提高了检测的准确率。
5. 与同类项目对比的亮点
- 性能优越: Strip-R-CNN 在多个数据集上取得了优秀的性能,例如在 DOTA-v1.0 数据集上,其 30M 模型的 mAP 达到了 82.75%,创下了新的记录。
- 网络结构简单: StripNet 和 Strip R-CNN 的网络结构相对简单,易于理解和实现。
- 开源代码: Strip-R-CNN 的代码完全开源,方便用户进行二次开发和使用。
- 模型压缩: Strip-R-CNN 提供了多种模型压缩方案,可以在保证性能的前提下,降低模型的计算量和存储空间。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
316
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
155
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
241
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K