testssl.sh 项目中的 Docker 构建优化探讨
在 testssl.sh 项目的 Docker 构建过程中,开发者们正在讨论如何优化最终的镜像构建阶段。目前 Dockerfile 中包含了两个最终构建阶段:dist-local
和 dist-git
,这引发了一些关于最佳实践的思考。
当前构建阶段分析
testssl.sh 的 Docker 构建流程目前提供了两种最终镜像构建方式:
-
dist-local 阶段:这是更传统的构建方式,假设用户已经将代码克隆到本地,然后基于本地文件系统构建镜像。这种方式允许使用
.dockerignore
文件来排除不必要的文件,从而减小最终镜像的体积。 -
dist-git 阶段:这个阶段设计用于直接从 Git 仓库构建镜像,无需事先克隆代码到本地。虽然提供了便利性,但实际上这种构建方式在功能上是冗余的,因为同样的效果可以通过调整构建参数来实现。
优化建议
技术讨论中提出了几个优化方向:
-
调整阶段顺序:建议将
dist-local
阶段作为默认构建目标,这可以通过简单地调整 Dockerfile 中多阶段构建的顺序来实现。按照 Docker 的惯例,最后一个定义的阶段会自动成为默认构建目标。 -
简化构建流程:考虑到
dist-git
阶段的功能可以通过其他方式实现,建议移除这个专门的构建阶段,转而使用更标准的 Docker 构建参数来实现相同的功能。 -
构建体验优化:对于希望直接从 Git 构建的用户,可以提供更简洁的命令行示例,使用标准的 Docker 远程构建功能,而不需要专门的构建阶段。
技术实现细节
如果保留 dist-git
阶段作为可选构建目标,用户可以通过以下方式使用:
docker build \
--tag localhost/testssl.sh:版本号 \
--target dist-git \
--build-arg GIT_BRANCH=分支名 \
.
而如果采用更简化的方案,用户可以直接从远程仓库构建:
docker build --tag localhost/testssl.sh:版本号 https://github.com/testssl/testssl.sh.git#分支名
对于 Alpine 变体,由于需要使用不同的 Dockerfile,命令会稍复杂一些:
docker build \
--tag localhost/testssl.sh:版本号-alpine \
--file https://raw.githubusercontent.com/testssl/testssl.sh/分支名/Dockerfile-alpine \
https://github.com/testssl/testssl.sh.git#分支名
性能与便利性权衡
讨论中也提到了性能与便利性之间的权衡:
- 镜像体积:使用
dist-local
方式配合.dockerignore
可以最小化镜像体积,大约能节省 8MB 空间。 - 构建便利性:直接从 Git 构建提供了更好的用户体验,特别是对于自动化脚本和 CI/CD 流水线。
- 维护成本:减少特殊的构建阶段可以简化 Dockerfile 的维护工作。
结论
对于大多数用户来说,优先使用 dist-local
阶段作为默认构建目标是一个合理的选择。这不仅符合 Docker 的最佳实践,还能提供更好的构建灵活性。对于那些需要直接从 Git 仓库构建的特殊用例,可以通过标准的 Docker 远程构建功能来实现,而不需要维护专门的构建阶段。这种优化将使项目的 Docker 构建配置更加简洁和易于维护。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









