Soybean Admin 项目中 Tab 状态管理的安全增强实践
背景与问题分析
在现代前端管理系统中,Tab 页签状态管理是一个常见的功能需求。Soybean Admin 作为一个优秀的前端管理框架,通过 tabStore 实现了多标签页的状态管理,包括标签页的缓存与恢复功能。然而,在实际应用中发现了一个潜在的安全隐患:
当用户A退出系统后,如果用户B使用同一设备登录,且用户B拥有与用户A相同的路由权限但不同的数据权限时,系统可能会错误地恢复用户A缓存的标签页状态。这种情况可能导致敏感数据泄露,因为被 keepAlive 的组件可能保留了前一个用户的数据状态。
技术解决方案
核心解决思路
针对上述安全问题,我们提出了以下技术改进方案:
- 用户身份校验机制:在恢复缓存标签页时,增加对当前用户身份的校验
- 登出清理机制:在用户主动登出时,彻底清理相关的标签页缓存
- 权限二次验证:恢复标签页时不仅检查路由权限,还需验证数据权限
具体实现方案
1. 用户身份绑定与验证
在 tabStore 初始化时,我们增加了用户ID绑定机制:
// 存储标签页时记录当前用户ID
const storeTabs = (tabs: AppTab[]) => {
const state = {
tabs,
userId: authStore.userId // 绑定当前用户ID
};
localStorage.setItem(TAB_STORE_KEY, JSON.stringify(state));
};
// 恢复标签页时验证用户ID
const initTabs = () => {
const state = JSON.parse(localStorage.getItem(TAB_STORE_KEY) || {};
if (state.userId && state.userId !== authStore.userId) {
// 用户不匹配,清空缓存
return [];
}
return state.tabs || [];
};
2. 登出时的清理机制
在用户登出操作中,我们增加了对标签页缓存的清理:
const logout = async () => {
// 清理标签页缓存
tabStore.clearCache();
// 其他登出逻辑...
await authStore.resetAuthStore();
};
3. 权限的细粒度控制
在恢复标签页时,不仅检查路由权限,还对数据权限进行验证:
const restoreTab = (tab: AppTab) => {
// 检查路由权限
if (!hasRoutePermission(tab.routePath)) {
return false;
}
// 检查数据权限
if (!checkDataPermission(tab.dataScope)) {
return false;
}
// 恢复标签页
// ...
};
技术细节与注意事项
-
缓存数据结构变更:为了存储用户ID信息,需要调整本地存储的数据结构,这可能会影响现有系统的兼容性
-
性能考量:额外的权限检查可能会带来轻微的性能开销,但在安全面前是可接受的
-
多端同步:如果系统支持多端登录,需要考虑缓存同步问题
-
敏感数据处理:对于特别敏感的数据,建议在组件层面也增加额外的保护措施
最佳实践建议
-
组合式安全策略:不应仅依赖前端的安全措施,后端也应进行相应的权限验证
-
定期清理机制:实现定期自动清理过期缓存的功能
-
用户提示:当系统检测到潜在的安全风险时,应给予用户适当的提示
-
测试覆盖:增加专门的测试用例来验证标签页缓存的安全行为
总结
通过对 Soybean Admin 项目中 tabStore 的改进,我们有效地解决了多用户环境下标签页缓存可能导致的安全问题。这一改进不仅增强了系统的安全性,也为类似的前端状态管理场景提供了可借鉴的解决方案。在实际项目中,开发者应当根据具体业务需求,灵活调整安全策略的严格程度,在安全性和用户体验之间取得平衡。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00