Great Expectations 1.3.8版本发布:增强指标计算与文档改进
2025-06-05 09:36:49作者:田桥桑Industrious
Great Expectations是一个开源的数据质量验证工具,它帮助数据工程师和分析师定义、记录和验证数据质量预期。该项目通过自动化测试确保数据符合预期,从而提升数据管道的可靠性。
核心功能增强
批量指标计算能力
1.3.8版本引入了Batch.compute_metrics()方法,这是一个重要的功能增强。该方法允许用户一次性计算多个指标,而不需要逐个调用。这种批量处理方式显著提高了性能,特别是在处理大型数据集时。数据团队现在可以更高效地执行全面的数据质量检查。
新增非空值指标
本次更新添加了两个重要的数据质量指标:
ColumnValuesNonNull:验证列中非空值的比例ColumnValuesNonNullCount:计算列中非空值的数量
这些指标对于数据完整性检查特别有用,可以帮助团队快速识别数据缺失问题,确保关键字段的完整性。
均值指标支持
在指标API中新增了对均值(mean)计算的支持。这一增强使得统计分析更加全面,用户现在可以直接通过Great Expectations获取数据分布的中心趋势指标,而无需额外计算。
架构优化
简化Metric类参数
移除了Metric类中的batch_id参数,这一变更简化了API设计,使代码更加清晰。开发者现在可以更专注于业务逻辑的实现,而不需要处理冗余的参数传递。
移除表域参数
从所有Metric的Domain中移除了table参数,这一架构调整使得领域模型更加简洁。这一变化反映了项目团队对API设计的持续优化,旨在提供更直观的接口。
文档改进
1.3.8版本对文档系统进行了多项改进:
- 参数说明展示优化:API参考页面现在以表格形式展示参数(args)、返回值(returns)和异常(raises),提高了可读性
- 多行参数支持:文档系统现在能够正确处理和显示多行参数和异常说明
- 内容修正:修复了文档中的拼写错误,提升了整体质量
这些改进使得Great Expectations的文档更加专业和易用,特别是对于新用户来说,能够更快地理解和使用各种功能。
技术影响分析
Great Expectations 1.3.8版本的这些改进对数据质量工作流有几个重要影响:
- 性能提升:批量指标计算能力减少了重复操作,特别有利于大规模数据集的质量检查
- 完整性检查增强:新增的非空值指标填补了数据质量验证的一个重要场景
- 统计分析能力扩展:均值指标的支持使得基础统计分析可以直接在Great Expectations中完成
- 开发者体验优化:API简化减少了认知负担,使开发者能更专注于业务逻辑
这些改进共同推动了Great Expectations作为数据质量工具的专业性和实用性,使其在数据工程领域继续保持领先地位。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
终极Emoji表情配置指南:从config.yaml到一键部署全流程如何用Aider AI助手快速开发游戏:从Pong到2048的完整指南从崩溃到重生:Anki参数重置功能深度优化方案 RuoYi-Cloud-Plus 微服务通用权限管理系统技术文档 GoldenLayout 布局配置完全指南 Tencent Cloud IM Server SDK Java 技术文档 解决JumpServer v4.10.1版本Windows发布机部署失败问题 最完整2025版!SeedVR2模型家族(3B/7B)选型与性能优化指南2025微信机器人新范式:从消息自动回复到智能助理的进化之路3分钟搞定!团子翻译器接入Gemini模型超详细指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350