LFADS-torch 开源项目最佳实践教程
1. 项目介绍
LFADS-torch 是一个基于 PyTorch 的开源项目,实现了潜在因子分析通过动态系统(LFADS)和自动LFADS(AutoLFADS)。该项目旨在提供一个模块化和可扩展的框架,用于分析和处理高维神经尖峰活动数据,特别是在科学和工程领域的下游应用。LFADS-torch 继承了 LFADS 的优点,并通过使用动态计算图、最小化代码模板、组合模型配置文件以及简化大规模训练等现代 Python 库的特性,使得模型更易于理解、配置和扩展。
2. 项目快速启动
在开始使用 LFADS-torch 之前,确保已经安装了 Python 和 Conda。以下步骤将指导你如何快速启动项目:
# 克隆项目仓库
git clone https://git平台.com/arsedler9/lfads-torch.git
# 创建新的 Conda 环境
conda create --name lfads-torch python=3.9
# 激活 Conda 环境
conda activate lfads-torch
# 进入项目目录
cd lfads-torch
# 安装项目依赖
pip install -e .
# 安装 pre-commit 钩子
pre-commit install
3. 应用案例和最佳实践
数据模块配置
在使用 LFADS-torch 前,你需要准备你的预处理数据文件。这些数据应该保存为 HDF5 格式,包含以下键:
train_encod_data: 训练时用作输入的数据。train_recon_data: 训练时用作重建目标的数据。valid_encod_data: 验证时用作输入的数据。valid_recon_data: 验证时用作重建目标的数据。
创建一个新的配置文件来定义你的数据模块(例如 configs/datamodule/my_datamodule.yaml),如下所示:
_target_: lfads_torch.datamodules.BasicDataModule
datafile_pattern: "<PATH-TO-HDF5-FILE>"
batch_size: "<YOUR-BATCH-SIZE>"
模型配置
接下来,创建一个模型配置文件来定义 LFADS 模型的架构(例如 configs/model/my_model.yaml)。项目提供了多个示例配置文件,你可以根据需要修改这些配置。
对于单会话模型,你可以参考 configs/model/nlb_mc_maze.yaml 中的示例配置,并更新以下参数:
encod_data_dim: 输入数据的n_channels维度。encod_seq_len: 输入数据的n_timesteps维度。recon_seq_len: 重建数据的n_timesteps维度。readout.modules.0.out_features: 重建数据的n_channels维度。
对于多会话模型,可以参考 configs/model/rouse_multisession_PCR.yaml 中的示例配置。
训练模型
使用 scripts/run_single.py 脚本来训练单个模型。编辑 RUN_DIR 路径到你想要的模型目录,并修改 overrides 参数:
overrides={
"datamodule": "my_datamodule",
"model": "my_model",
}
这将告诉 LFADS-torch 使用你定义的自定义数据模块和模型配置。在 LFADS-torch 环境中运行这个脚本将在 GPU 上开始优化模型(如果可用)。日志和检查点将保存在模型目录中,模型输出将在训练完成后保存在 lfads_output_sess{i}.h5 文件中。
4. 典型生态项目
LFADS-torch 作为一种神经数据分析工具,其生态项目通常包括但不限于:
- 神经科学应用:利用 LFADS-torch 来分析和解码神经活动数据。
- 信号处理:使用 LFADS-torch 来处理和重建复杂的时间序列信号。
- 数据可视化:结合 LFADS-torch 的结果进行数据可视化和分析。
以上就是 LFADS-torch 的最佳实践教程,希望能够帮助到你更好地理解和运用这个强大的工具。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00