Proxmox中Jellyfin容器从Ubuntu 23.04升级到23.10的技术指南
问题背景
在使用Proxmox VE 8.1.5环境时,用户尝试将基于Ubuntu 23.04(Lunar)的Jellyfin LXC容器从10.8.12版本升级到10.8.13版本时遇到了困难。主要问题表现为apt更新失败,错误提示表明Jellyfin的Ubuntu 23.04(Lunar)软件源已不再可用。
根本原因分析
Ubuntu 23.04(Lunar)是一个非LTS版本,其官方支持周期较短。当Ubuntu发布新版本后,旧的非LTS版本的软件仓库会被移动到归档服务器,导致原有的软件源配置失效。Jellyfin项目也遵循这一原则,停止了对Ubuntu 23.04的软件源支持。
解决方案步骤
1. 修改Ubuntu基础软件源
首先需要将容器的基础软件源从23.04(Lunar)更新到23.10(Mantic):
-
编辑软件源配置文件:
sudo nano /etc/apt/sources.list
-
将所有出现的"lunar"替换为"mantic":
deb http://archive.ubuntu.com/ubuntu mantic main restricted universe multiverse deb http://archive.ubuntu.com/ubuntu mantic-updates main restricted universe multiverse deb http://archive.ubuntu.com/ubuntu mantic-security main restricted universe multiverse
2. 更新Jellyfin软件源配置
-
编辑Jellyfin专用软件源文件:
sudo nano /etc/apt/sources.list.d/jellyfin.sources
-
将"Suites: lunar"修改为"Suites: mantic"
3. 执行系统升级
按照以下顺序执行升级命令:
sudo apt-get update
sudo do-release-upgrade
sudo apt-get dist-upgrade
4. 运行Jellyfin更新脚本
最后执行Proxmox的Jellyfin更新脚本完成升级:
bash -c "$(wget -qLO - https://github.com/tteck/Proxmox/raw/main/ct/jellyfin.sh)"
技术要点说明
-
版本选择建议:对于生产环境,建议使用Ubuntu LTS版本(如22.04)作为基础系统,可以获得更长的支持周期和更稳定的更新。
-
升级顺序:必须先完成基础系统的版本升级,再处理应用软件的更新,确保依赖关系正确。
-
FFMPEG路径变更:Jellyfin 10.8.13版本移除了通过GUI修改FFMPEG路径的功能,脚本安装的FFMPEG位置已经是默认路径,无需额外配置。
-
安全考虑:系统升级过程中会自动处理证书和密钥的更新,确保软件来源的可信性。
最佳实践建议
-
定期检查容器的基础系统版本支持状态,非LTS版本建议在支持结束前升级到新版本。
-
对于关键服务如Jellyfin,考虑使用稳定的LTS版本作为基础系统。
-
在执行大规模升级前,建议先备份容器状态,以防升级失败导致服务中断。
-
关注Jellyfin项目的安全公告,及时应用重要安全更新。
通过以上步骤,用户可以顺利完成从Ubuntu 23.04到23.10的系统升级,并保持Jellyfin媒体服务器的最新状态,确保获得最新的功能和安全修复。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~028CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0265- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









