探索隐藏的艺术:HiDDeN - 使用深度网络隐藏数据的开源实现
在信息安全和加密领域中,创新永不停歇。今天我们要介绍的是一个名为HiDDeN的开源项目,它是论文“HiDDeN: Hiding Data With Deep Networks”的Pytorch实现。该项目由Jiren Zhu、Russell Kaplan、Justin Johnson和Li Fei-Fei共同贡献,并提供了一种全新的方式来隐藏信息于图像之中,利用深度学习的力量对抗各种噪声干扰。
项目介绍
HiDDeN的核心是将数据编码为图像的像素值,然后通过深度学习模型进行解码,即使经过常见的图像处理(如裁剪、压缩等)也能恢复原始信息。这个Pytorch版本的实现旨在复现原论文的结果,尽管目前还在开发中,但已经提供了足够的功能供研究者探索和应用。
项目技术分析
项目基于Pytorch框架构建,可直接利用TorchVision的数据加载器。它支持多种噪声层配置,以模拟真实世界中的图像处理操作,如作物裁剪、随机丢弃像素、尺寸缩放以及JPEG压缩等。这些噪声层是在训练过程中随机添加到水印图像上的,从而增强模型的鲁棒性。
代码结构清晰,参数设置灵活,允许用户在训练时选择不同的噪声层组合,以适应各种应用场景。此外,项目还支持TensorboardX,用于可视化训练过程,便于调整超参数和优化模型性能。
项目及技术应用场景
HiDDeN的技术非常适合需要隐秘传递敏感信息的场景,例如,在受限制的环境中发送加密信息或保护版权信息。此外,这项技术还可以用于对抗图像篡改检测,因为隐藏的信息不会因常规的图像处理而丢失。
项目特点
- 易用性:基于Pytorch实现,易于理解和修改,对Python 3.6+ 和主流操作系统(Ubuntu和Windows)兼容。
- 灵活性:支持多种噪声层配置,可以根据实际需求自定义噪声模式。
- 可复现性:尽管当前结果尚未完全达到原论文的水平,但仍提供了足够的信息和工具以尝试复现实验。
- 可视化:集成TensorboardX,可以实时查看训练进度和指标,方便调试。
要启动项目,只需安装必要的依赖,准备数据集,运行main.py脚本即可开始训练。这是一个真正值得研究者和开发者深入探讨的项目,尤其是那些对隐藏通信和图像安全有兴趣的人。
总体来说,HiDDeN项目是一个富有创新性的开源实现,它展示了如何在深度学习的辅助下提升信息隐藏的效率与安全性。如果你正在寻找一种新的方法来隐藏或保护你的数据,那么HiDDeN绝对值得关注!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00