OpenKS 开源项目教程
2024-09-21 00:11:49作者:庞眉杨Will
1. 项目介绍
OpenKS(知目)是一个领域可泛化的知识学习与计算引擎,旨在通过开源的方式提供一个强大的知识图谱构建和推理平台。OpenKS 支持多种知识表示和学习算法,能够处理大规模的知识图谱数据,并提供高效的推理能力。该项目由浙江大学等多家高校和研究机构共同开发,致力于推动知识计算技术的发展和应用。
2. 项目快速启动
环境要求
在开始之前,请确保您的环境满足以下要求:
- Python 3.7 或更高版本
- NumPy 1.19.5 或更高版本
- NetworkX 2.4 或更高版本
安装步骤
-
克隆项目仓库:
git clone https://github.com/ZJU-OpenKS/OpenKS.git -
进入项目目录:
cd OpenKS -
安装依赖:
pip install -r requirements.txt
快速启动示例
以下是一个简单的知识图谱问答示例:
# 导入必要的模块
from openks.apps.qa import RuleParserMedical, AnswerFetcher
from openks.loaders import loader_config, SourceType, FileType, GraphLoader
# 配置数据载入参数
loader_config.source_type = SourceType.LOCAL_FILE
loader_config.file_type = FileType.OPENKS
loader_config.source_uris = 'openks/data/medical'
loader_config.data_name = 'test-data-set'
# 载入数据并生成知识图谱
loader = Loader(loader_config)
dataset = loader.dataset
graph_loader = GraphLoader(loader_config)
graph = graph_loader.graph
# 选择自定义的问题解析类并进行规则和模型预加载
parser = RuleParserMedical(graph)
# 输入问题并对问题进行结构化解析
question = input("输入问题:")
struc_q = parser.parse(question)
# 根据结构化问题获取答案
fetcher = AnswerFetcher(struc_q, graph)
print(fetcher.fetch_by_db_query(graph_db))
3. 应用案例和最佳实践
应用案例
OpenKS 在多个领域都有广泛的应用,以下是一些典型的应用案例:
- 气象预报系统:通过构建地名、气象术语等知识库,OpenKS 能够帮助系统自动解析和推理气象数据,提供更准确的预报结果。
- 医疗诊断系统:OpenKS 可以整合医学知识图谱,辅助医生进行疾病诊断和治疗方案推荐。
最佳实践
在使用 OpenKS 进行知识图谱构建和推理时,建议遵循以下最佳实践:
- 数据预处理:确保输入数据的格式和质量,避免噪声数据对推理结果的影响。
- 模型选择:根据具体应用场景选择合适的知识表示和推理模型,如 TransE、GCN 等。
- 性能优化:对于大规模知识图谱,可以采用分布式计算和优化算法来提高推理效率。
4. 典型生态项目
OpenKS 作为一个开源项目,与其他相关项目和工具形成了丰富的生态系统,以下是一些典型的生态项目:
- PaddlePaddle:百度开源的深度学习平台,与 OpenKS 结合可以实现更强大的知识图谱学习和推理能力。
- NetworkX:用于复杂网络分析的 Python 库,与 OpenKS 结合可以进行更复杂的图结构分析。
- Ray:用于分布式计算的框架,可以帮助 OpenKS 处理大规模知识图谱数据。
通过这些生态项目的结合,OpenKS 能够更好地满足不同应用场景的需求,提供更强大的知识计算能力。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759