Pyodide项目成功集成CVXPY-base优化求解库
CVXPY是一个用于凸优化建模的Python库,它采用"disciplined convex programming"(DCP)范式,使得用户可以方便地构建和求解各种优化问题。近日,Pyodide项目团队成功将CVXPY-base 1.4.3版本集成到了这个基于WebAssembly的Python运行环境中。
CVXPY-base是CVXPY的核心版本,它剥离了部分依赖项,保留了基本功能。这个版本特别适合在浏览器环境中使用,因为它可以与Scipy中提供的HIGHs求解器配合使用,解决线性规划(LP)和混合整数规划(MIP)问题。这对于在线教育、交互式学习等场景非常有价值。
Pyodide团队在集成过程中解决了几个关键技术挑战。首先,CVXPY-base使用了C扩展,这需要特殊的构建配置才能在WebAssembly环境中正常工作。其次,该库依赖pybind11、scipy和numpy等基础科学计算库,这些依赖项都需要在Pyodide环境中正确配置。
一位社区开发者pablormier已经成功地在Python 3.11环境下构建并测试了cvxpy-base 1.4.3版本,验证了其功能完整性。从测试截图可以看到,该库能够在浏览器中正常运行,求解基本的优化问题。
Pyodide核心团队成员ryanking13确认,这一集成工作已经完成,并将在下一个Pyodide版本中正式发布。这意味着开发者很快就能直接在浏览器环境中使用CVXPY进行优化建模和求解,无需任何本地安装。
这一进展为Web端的科学计算和优化教学开辟了新的可能性。教育工作者可以创建交互式的优化问题演示,学生可以直接在浏览器中修改参数并观察求解结果。对于需要轻量级优化求解的Web应用,这也提供了一个便捷的解决方案。
随着Pyodide生态系统的不断完善,越来越多的科学计算库被成功移植到Web环境,这正在改变人们使用Python进行科学计算的方式。CVXPY-base的加入进一步丰富了Pyodide的功能集,使其成为Web端技术计算的一个更加强大的平台。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0126
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00