Apache Fury反序列化Thrift对象失败问题分析
问题背景
在Apache Fury项目中,当尝试反序列化实现了自定义readObject和writeObject方法的Thrift对象时,可能会遇到反序列化失败的问题。这个问题在Fury 0.10.2、0.11.0及master分支中均存在,主要出现在使用较小的初始缓冲区大小时。
问题现象
当使用Fury序列化Thrift对象后,再尝试反序列化时,会抛出DeserializationException异常,其根本原因是Thrift抛出的TTransportException,提示"Remote side has closed"错误。具体表现为Thrift在读取数据时尝试读取1字节但实际获取0字节。
根本原因分析
-
Thrift对象的序列化机制:Thrift对象实现了自定义的
readObject和writeObject方法,这使得Fury使用ObjectStreamSerializer来处理这些对象以保证兼容性。 -
Thrift的读取逻辑:Thrift的
readObject方法内部会调用TTransport.readAll方法,该方法要求必须读取到指定长度的数据,否则会抛出异常。 -
Fury的InputStream实现:Fury重写了
ObjectInputStream的实现,其read方法在缓冲区剩余字节不足时,会返回实际读取的字节数(可能为0),这与标准JDK实现的行为不同。 -
行为差异:
- JDK的
InputStream.read方法允许返回0字节(当len≠0时) - Thrift的
readAll方法不接受返回0字节的情况 - Fury的实现在缓冲区为空时返回0字节
- JDK的
技术细节
Thrift的TTransport.readAll方法实现如下:
public int readAll(byte[] buf, int off, int len) throws TTransportException {
int got = 0;
int ret = 0;
while (got < len) {
ret = read(buf, off+got, len-got);
if (ret <= 0) {
throw new TTransportException("Cannot read...");
}
got += ret;
}
return got;
}
而Fury的FuryObjectInputStream.read实现如下:
public int read(byte[] buf, int offset, int length) throws IOException {
// 参数检查省略...
int remaining = buffer.remaining();
if (remaining < length) {
buffer.readBytes(buf, offset, remaining);
return remaining; // 可能返回0
} else {
buffer.readBytes(buf, offset, length);
return length;
}
}
解决方案
修复方案是修改FuryObjectInputStream.read的实现,使其在缓冲区为空时强制重新填充缓冲区,而不是直接返回0字节。这样可以确保:
- 与JDK标准行为保持一致
- 满足Thrift等库对输入流的预期
- 避免反序列化过程中出现无限循环或异常
经验总结
- 在实现自定义输入流时,需要特别注意与标准库行为的兼容性
- 对于序列化框架,处理第三方库的自定义序列化逻辑时需要格外小心
- 边界条件(如空缓冲区)的处理往往是问题的根源
- 单元测试应覆盖各种缓冲区大小和边界条件
这个问题展示了在框架开发中,不同组件间的隐式契约和预期行为的重要性,也提醒我们在实现兼容层时需要深入理解各方的行为规范。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C085
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00