EasyEdit项目中自回归生成与教师强制在推理阶段的实现对比
2025-07-03 20:22:46作者:凌朦慧Richard
在自然语言处理领域,模型推理阶段通常采用两种主要生成方式:自回归生成和教师强制。本文基于EasyEdit项目中的相关讨论,深入分析这两种生成方式在模型编辑任务中的应用差异及实现方法。
自回归生成的核心实现
EasyEdit项目提供了自回归生成的标准实现方式。其核心在于使用模型的generate方法,通过设置temperature参数为0来确保确定性输出,同时限制最大生成长度(max_new_tokens)以避免过长的生成结果。
自回归生成的关键优势在于:
- 更接近真实应用场景,模型完全自主生成文本
- 能够评估模型在开放生成环境下的表现
- 可以检测模型是否会产生无关内容
教师强制与严格匹配评估
相比之下,教师强制模式要求生成结果与目标文本严格匹配。这种评估方式虽然简单直接,但过于严格,在实际应用中可能无法全面反映模型能力。
项目中的verify_answer函数展示了更灵活的评估方式,它允许目标答案以列表形式存在,只要生成文本包含任一目标答案片段即视为正确。这种方式更贴近实际应用场景,因为用户通常关心的是生成内容是否包含所需信息,而非严格的逐字匹配。
局部性评估的特殊考量
在模型编辑任务中,局部性(locality)评估尤为重要。它衡量的是编辑后的模型在无关样本上的输出是否保持不变。EasyEdit采用准确率(Accuracy)作为评估指标,计算公式为编辑前后模型输出相同的比例。
值得注意的是,在自回归生成模式下,局部性评估采用逐token匹配的方式。这种严格评估确保了模型在保持原有知识方面的稳定性,是模型编辑质量的重要保障。
实际应用建议
对于希望使用EasyEdit的研究者,建议:
- 根据评估目标选择合适的生成模式
- 理解不同评估指标的优缺点
- 对于关键应用,可考虑结合多种评估方式
- 在局部性评估中,严格匹配能更好保证模型稳定性
通过合理选择生成和评估策略,可以更全面地评估模型编辑效果,确保编辑后的模型既满足新知识需求,又保持原有知识的稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1