Makie.jl中分类热图颜色范围问题的分析与解决
2025-07-01 22:02:22作者:韦蓉瑛
问题背景
在使用Makie.jl数据可视化库时,开发者发现当使用分类颜色映射(colormap=Makie.Categorical)创建热图(heatmap)时,颜色条(colorbar)显示的范围与数据实际范围不符。具体表现为:当绘制一个简单的3×3矩阵时,颜色条显示的数值范围(1到4)完全超出了数据实际范围(-1到-3)。
问题复现
通过以下代码可以复现该问题:
using CairoMakie
# 正常热图
fig1, ax1, pl1 = heatmap(1:3, 1:3, .-(1:3))
Colorbar(fig1[1, 2], pl1)
# 分类颜色热图
fig2, ax2, pl2 = heatmap(1:3, 1:3, .-(1:3), colormap=Makie.Categorical(:viridis))
Colorbar(fig2[1, 2], pl2)
正常热图显示的颜色范围与数据一致,而分类颜色热图则出现了范围不匹配的情况。
技术分析
这个问题源于Makie.jl内部对分类颜色映射的处理机制。在实现分类热图时,Makie使用NaN值来表示透明或缺失的数据点。当创建基于三个向量(x, y, z)的热图时,系统会生成一个稀疏矩阵,其中未指定的位置用NaN填充。
在分类颜色映射模式下,这些NaN值被当作一个额外的类别处理,导致颜色条显示的范围比实际数据范围大。具体表现为:
- 实际数据值被映射到整数索引
- NaN值也被分配了一个索引
- 颜色条默认显示所有可能的索引值
解决方案
Makie开发团队在版本0.20.10中修复了这个问题。修复后的行为是:
- 颜色条正确显示实际数据值的范围
- NaN值仍然存在,但不再影响颜色条的显示范围
修复后的输出示例:
[-3.0, -2.0, -1.0]
深入讨论
虽然问题已经修复,但仍有一些值得讨论的技术点:
-
稀疏数据表示:当前Makie使用NaN表示缺失值的方法虽然有效,但对于用户不显式指定NaN的情况可能会造成混淆。未来可能会考虑使用其他方式表示稀疏数据。
-
分类颜色映射的特殊性:分类颜色映射与连续颜色映射有本质区别:
- 分类映射中每个值代表一个离散类别
- 颜色条需要明确显示所有类别
- 类别的顺序和表示需要特别处理
-
实际应用场景:这个问题在需要将枚举类型(Enum)可视化为热图时尤为重要。开发者可以使用分类颜色映射来清晰地区分不同枚举值。
最佳实践建议
对于需要在Makie中使用分类颜色映射的开发者,建议:
- 明确数据的类型和范围
- 检查颜色条显示是否符合预期
- 对于枚举类型数据,考虑预先定义颜色映射关系
- 更新到最新版本以获得最佳的分类颜色映射支持
通过理解这些技术细节,开发者可以更好地利用Makie.jl的分类可视化功能,创建更准确、更直观的数据可视化效果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217