Finbuckle.MultiTenant 9.2.0版本发布:多租户框架的增强与优化
项目简介
Finbuckle.MultiTenant是一个功能强大的.NET多租户框架,它帮助开发者在应用程序中实现多租户架构。多租户架构允许单个应用程序实例为多个租户提供服务,同时保持租户间的数据隔离。该框架提供了租户解析、数据隔离、配置隔离等核心功能,支持多种租户存储方式和解析策略。
版本9.2.0主要更新内容
1. 新增StoreResolveCompletedContext的Context属性
在9.2.0版本中,框架为StoreResolveCompletedContext添加了Context属性。这一改进使得开发者能够在租户解析完成后,访问原始的HttpContext对象。这一功能特别适用于需要基于HTTP请求上下文进行额外处理的场景。
例如,开发者现在可以:
- 访问请求头、查询字符串等原始HTTP信息
- 在租户解析完成后记录详细的请求日志
- 基于请求上下文实现更复杂的租户解析逻辑
2. IMultiTenantStore.GetAllAsync方法新增分页支持
为了提升大规模租户环境下的性能,9.2.0版本为IMultiTenantStore接口的GetAllAsync方法添加了分页支持的重载。这一改进允许开发者按需获取租户列表,而不是一次性加载所有租户信息。
新重载方法支持:
- 指定每页返回的租户数量
- 跳过指定数量的租户记录
- 更高效地处理包含大量租户的系统
3. 新增多租户DbContext工厂实现
此版本引入了更多多租户DbContext工厂实现,为不同使用场景提供了更灵活的选择。这些工厂类简化了在多租户环境中创建和管理DbContext实例的过程。
新工厂类支持:
- 不同的生命周期管理策略
- 更灵活的配置选项
- 与依赖注入系统的深度集成
4. 修复UserLogin主键中的TenantId问题
在之前的版本中,TenantId被错误地包含在UserLogin实体的主键中。9.2.0版本修复了这一问题,确保了身份验证系统的正确行为。这一变更:
- 修复了潜在的身份验证问题
- 使数据模型更加合理
- 保持了与其他身份验证组件的兼容性
技术影响与最佳实践
性能优化建议
对于拥有大量租户的系统,建议使用新的分页API来替代一次性加载所有租户的做法。这可以显著减少内存使用和提高响应速度。
迁移指南
从旧版本迁移时,需要注意UserLogin实体主键的变更。如果项目中有自定义的身份验证逻辑,可能需要相应调整。
设计考量
新增的DbContext工厂提供了更多设计选择,开发者应根据具体场景选择最适合的工厂实现:
- 对于短期操作,可以使用瞬态生命周期
- 对于请求范围内的操作,可以使用作用域生命周期
- 对于性能敏感场景,可以考虑使用池化技术
总结
Finbuckle.MultiTenant 9.2.0版本通过新增功能和修复问题,进一步提升了框架的实用性和稳定性。这些改进使得开发者能够更高效地构建和维护多租户应用程序,特别是在大规模部署场景下。建议现有用户评估这些新功能,并根据项目需求进行升级。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00