深入理解NVIDIA CUTLASS中的sgemm_sm80.cu实现
2025-05-30 10:54:20作者:霍妲思
背景介绍
NVIDIA CUTLASS是一个高性能CUDA C++模板库,用于实现矩阵乘法(GEMM)和其他相关计算。其中sgemm_sm80.cu示例展示了如何在Ampere架构(SM80)上实现单精度浮点矩阵乘法。
核心问题分析
在分析sgemm_sm80.cu实现时,开发者最初对HFMA2指令的使用存在疑问。通过深入研究,我们发现:
- 原始示例使用float×float=float计算,自然生成FFMA指令而非HFMA2
- HFMA2指令需要所有操作数都是FP16类型
- 要实现half×half=float计算,需要显式使用SM80特定的MMA指令
技术实现细节
原始实现分析
原始sgemm_sm80.cu示例使用UniversalFMA模板,这会根据输入类型自动选择对应的FMA指令。对于float类型,生成的是标准的FFMA指令。
修改为FP16实现
要将示例改为使用FP16输入,需要进行以下关键修改:
- 数据类型修改:将TA和TB从float改为cute::half_t
- MMA指令选择:使用SM80_16x8x8_F32F16F16F32_TN特定的MMA原子操作
- 线程布局调整:优化线程布局以匹配FP16计算需求
性能考量
使用FP16输入时需要注意:
- 累加器仍然使用FP32可以保持数值稳定性
- SM80架构的Tensor Core对FP16计算有专门优化
- 内存访问模式需要与计算模式匹配以获得最佳性能
实际应用建议
对于希望使用CUTLASS实现混合精度计算的开发者,建议:
- 明确计算精度需求:输入/输出/累加精度
- 选择适当的MMA指令:SM80提供多种精度组合的MMA指令
- 验证计算结果:混合精度计算可能影响数值稳定性
- 性能分析:使用Nsight Compute等工具验证实际指令生成
总结
通过深入分析sgemm_sm80.cu示例,我们理解了CUTLASS如何在不同精度下生成对应的计算指令。对于FP16计算,需要显式使用特定的MMA指令而非依赖通用FMA实现,这是实现高性能混合精度计算的关键。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248