Lotus项目ZSTD压缩库性能对比分析
2025-06-27 14:15:50作者:丁柯新Fawn
背景介绍
在分布式存储系统Lotus中,数据压缩是一个关键的性能优化点。ZSTD作为一种高效的压缩算法,被广泛应用于项目中。然而,Lotus项目目前使用了两种不同的ZSTD实现库:DataDog/zstd(基于CGO)和klauspost/compress(纯Go实现)。这种双实现带来了技术债务和维护成本的问题。
性能测试方法
为了评估两种实现的性能差异,我们设计了一套全面的基准测试方案:
-
测试数据:
- 人工生成的1MiB、10MiB和100MiB随机数据
- 实际从Calibnet获取的快照数据
-
测试指标:
- 操作耗时(秒/操作)
- 吞吐量(B/s)
- 内存分配(B/op)
- 分配次数(allocs/op)
-
测试环境:
- 12核处理器
- 不同架构(AMD64和ARM64)
测试结果分析
性能对比
测试结果显示,DataDog/zstd在大多数情况下表现更优:
-
小数据量(1MiB):
- DataDog耗时187.8μs
- klauspost同步模式耗时202.9μs(+8%)
- klauspost异步模式耗时353.5μs(+88%)
-
中等数据量(10MiB):
- DataDog耗时1.240ms
- klauspost同步模式耗时1.158ms(-6.6%)
- klauspost异步模式耗时1.508ms(+21.57%)
-
大数据量(100MiB):
- DataDog耗时12.97ms
- klauspost同步模式耗时13.94ms(+7.48%)
- klauspost异步模式耗时15.58ms(+20.19%)
内存使用对比
klauspost实现的内存使用明显高于DataDog:
-
内存分配:
- DataDog平均265.1KiB
- klauspost同步模式3.21MiB(+1110%)
- klauspost异步模式3.62MiB(+1266%)
-
分配次数:
- DataDog平均11次
- klauspost同步模式15次(+36%)
- klauspost异步模式40次(+263%)
技术考量
-
架构支持:
- klauspost对AMD64有优化,但对ARM64支持不足
- DataDog通过CGO实现,架构兼容性更好
-
并发模型:
- klauspost异步模式理论上应该更快,但实际测试中同步模式反而表现更好
- 这可能与I/O模式和缓冲区大小有关
-
实际应用场景:
- 在Lotus中主要用于快照导入
- 解压缩性能可能不是整体流程的瓶颈
结论与建议
基于测试结果和技术分析,我们建议:
-
统一使用klauspost/compress实现:
- 虽然性能略低,但纯Go实现简化了构建和部署
- 避免了CGO带来的跨平台问题
-
针对快照导入优化:
- 使用同步模式(WithDecoderConcurrency(1))
- 适当调整缓冲区大小
-
未来优化方向:
- 贡献代码改善klauspost的ARM64性能
- 优化内存分配模式
这种调整将简化项目依赖关系,虽然牺牲少量性能,但获得了更好的可维护性和跨平台支持,从长远看是值得的权衡。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1