在dotnet/extensions项目中实现AI安全评估器的响应缓存机制
2025-06-27 02:51:49作者:虞亚竹Luna
背景与现状分析
在dotnet/extensions项目中,AI评估功能分为质量评估器(Quality evaluators)和安全评估器(Safety evaluators)两大类。目前质量评估器已经通过ResposeCachingChatClient实现了对LLM响应的缓存机制,而安全评估器在与Azure AI内容安全服务交互时尚未实现响应缓存功能。
技术实现方案
缓存机制的必要性
响应缓存对于AI评估系统至关重要,它能带来以下优势:
- 性能提升:避免对相同内容重复评估,减少网络延迟
- 成本优化:降低对云服务的调用次数,节省API费用
- 结果一致性:确保相同输入获得相同评估结果
安全评估器的特殊性
安全评估器与质量评估器的主要区别在于:
- 交互对象不同:安全评估器调用Azure AI内容安全服务而非LLM
- 评估维度不同:安全评估关注有害内容识别而非回答质量
- 响应结构差异:安全评估返回的是风险评分而非自然语言响应
实现方案设计
基于项目现有架构,可采用以下方式实现安全评估器的缓存:
- 缓存键设计:以评估内容文本作为缓存键
- 缓存策略:采用与质量评估器一致的缓存过期策略
- 线程安全:确保多线程环境下的缓存访问安全
- 异常处理:正确处理缓存失效或服务不可用情况
实现细节
缓存层抽象
在安全评估器中引入缓存抽象层,保持与现有架构的一致性:
public interface ISafetyEvaluationCache
{
Task<SafetyEvaluationResult> GetOrAddAsync(string content, Func<Task<SafetyEvaluationResult>> evaluationFunc);
}
缓存实现
基于内存缓存的实现示例:
public class MemorySafetyEvaluationCache : ISafetyEvaluationCache
{
private readonly IMemoryCache _cache;
private readonly TimeSpan _expiration;
public async Task<SafetyEvaluationResult> GetOrAddAsync(string content, Func<Task<SafetyEvaluationResult>> evaluationFunc)
{
return await _cache.GetOrCreateAsync(content, async entry =>
{
entry.SetAbsoluteExpiration(_expiration);
return await evaluationFunc();
});
}
}
集成到评估流程
将缓存层集成到现有安全评估流程中:
- 在评估请求发起前检查缓存
- 缓存命中则直接返回结果
- 缓存未命中则调用Azure服务并缓存结果
性能考量
实现缓存后需考虑以下性能因素:
- 内存占用:监控缓存大小,防止内存溢出
- 缓存命中率:优化缓存策略提高命中率
- 并发性能:确保高并发下的缓存访问效率
未来扩展方向
- 分布式缓存:支持Redis等分布式缓存方案
- 智能缓存失效:基于内容变化自动失效缓存
- 分层缓存:实现内存+持久化的多层缓存架构
总结
在dotnet/extensions项目中为安全评估器添加响应缓存机制,不仅提升了系统性能,还保持了架构的一致性。这一改进使得AI评估系统在处理重复内容时更加高效,同时降低了对外部服务的依赖和调用成本。实现过程中需要注意缓存策略的设计和线程安全问题,确保系统的稳定性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869