首页
/ 开源项目实战:上下文注意力信息检索(context_attentive_ir)

开源项目实战:上下文注意力信息检索(context_attentive_ir)

2024-08-30 16:14:48作者:宗隆裙

1. 项目介绍

本项目是基于PyTorch实现的上下文感知神经信息检索的官方代码库,详细涵盖了其在ICLR 2018和SIGIR 2019发表的两篇论文的核心算法。【[ICLR 2018] 多任务学习用于文档排名和查询建议】与【[SIGIR 2019] 上下文注意力文档排名和查询建议】。该实现聚焦于利用上下文信息提升信息检索系统的性能。

2. 项目快速启动

要迅速开始使用此项目,确保你的环境已安装Python 3.6及以上版本以及PyTorch 0.4或更高(推荐测试版为0.4.1)。此外,spaCy、tqdm和prettytable也是运行项目所必需的库。

安装依赖项

首先,通过pip或其他方式安装必要的Python包:

pip install torch>=0.4 spacy tqdm prettytable
python -m spacy download en_core_web_sm # 如果项目需要英文处理

启动项目

接下来,进入项目根目录,并选择你想要执行的任务脚本。以下是训练和测试的基本命令示例:

文档排名模型

cd scripts
bash ranker.sh GPU_ID MODEL_NAME

查询建议模型

bash recommender.sh GPU_ID MODEL_NAME

多任务模型

bash multitask_model.sh GPU_ID MODEL_NAME

记得将GPU_ID替换为你想使用的GPU编号,MODEL_NAME指定相应的模型名称或配置。

3. 应用案例和最佳实践

虽然具体的应用案例未直接提供,但这个项目非常适合那些需要根据上下文优化搜索结果的场景,比如定制搜索引擎、智能助手或是电商产品的推荐系统。最佳实践中,开发者应该调整模型参数以适应特定的数据集和业务需求,比如通过交叉验证来选取最优超参数,确保模型能够在保持高召回率的同时提高精准度。

4. 典型生态项目

与本项目相关的生态包括但不限于其他先进的信息检索系统,例如基于Transformer的检索模型或是集成多任务学习的复杂应用场景。虽然本项目本身未明确指出直接关联的生态项目,但在NLP领域,类似“BERT for IR”、“MDSR(Multi-hop Dense Passage Retrieval)”等项目可以被视为技术演进的同行,它们共同推动了信息检索领域的创新。


**注意:**由于原仓库已被归档,实际使用时需留意潜在的维护问题及兼容性更新。建议在引入到重要项目之前,充分评估项目现状和社区活动。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
267
55
国产编程语言蓝皮书国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-CasesHarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4