xCyclopedia 开源项目教程
1. 项目介绍
xCyclopedia 是一个开源项目,旨在记录操作系统中所有可执行二进制文件(以及最终的脚本)。该项目提供了一个网页来查看数据,以及机器可读的格式(如 JSON 和 CSV),这些格式可以直接用于其他系统,如 SIEM(安全信息和事件管理),以丰富观察到的执行上下文数据。
xCyclopedia 的主要目标是提供一个全面的可执行文件数据库,包括运行时数据、文件元数据、数字签名有效性和相关元数据、文件哈希、模糊文件哈希、相似文件、外部引用以及已知的滥用示例。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统上已安装以下工具:
- PowerShell
- ssdeep(用于获取模糊哈希)
- Sysinternals Handle(用于获取进程的打开句柄)
- Sysinternals Sigcheck(用于获取额外的文件哈希、VirusTotal 检测和 PE 机器类型)
2.2 克隆项目
首先,克隆 xCyclopedia 项目到本地:
git clone https://github.com/strontic/xcyclopedia.git
cd xcyclopedia
2.3 运行收集脚本
使用 PowerShell 运行收集脚本 Get-Xcyclopedia,该脚本会递归遍历指定目录中的所有可执行文件,并收集多种数据:
.\Get-Xcyclopedia.ps1 -save_path "c:\xCyclopedia\out\" -target_path "$env:windir\system32" -target_file_extension "exe"
2.4 合并 JSON 文件
收集完成后,可以使用 Coalesce-Json 脚本将多个 JSON 文件合并为一个文件:
.\Coalesce-Json.ps1 -save_path "c:\xCyclopedia\out\" -target_files "c:\temp\A.json", "c:\temp\B.json"
3. 应用案例和最佳实践
3.1 安全信息和事件管理(SIEM)
xCyclopedia 的数据可以直接导入到 SIEM 系统中,以丰富观察到的执行上下文数据。例如,可以使用 xCyclopedia 的 JSON 输出文件来增强 SIEM 中的事件日志,提供更详细的可执行文件信息。
3.2 恶意软件分析
安全研究人员可以使用 xCyclopedia 的数据来分析恶意软件的行为。通过比较已知恶意软件的哈希值和 xCyclopedia 中的数据,可以快速识别出潜在的恶意行为。
3.3 合规性检查
企业可以使用 xCyclopedia 来检查其系统中安装的可执行文件是否符合合规性要求。通过与 xCyclopedia 中的数据进行比较,可以确保所有安装的软件都是经过验证的。
4. 典型生态项目
4.1 Sysinternals 工具集
Sysinternals 工具集是 xCyclopedia 的重要依赖之一。特别是 Sigcheck 工具,用于获取额外的文件哈希、VirusTotal 检测和 PE 机器类型。
4.2 VirusTotal
VirusTotal 是一个在线服务,用于分析可疑文件和 URL,以检测恶意软件。xCyclopedia 可以使用 VirusTotal 的 API 来获取文件的检测比率,从而增强其数据集。
4.3 Atomic Red Team
Atomic Red Team 是一个开源项目,提供了用于测试安全控制的小型、可移植的测试用例。xCyclopedia 可以与 Atomic Red Team 结合使用,以识别和分析已知的恶意行为。
通过这些模块的介绍和实践指南,您可以更好地理解和使用 xCyclopedia 项目,从而在安全分析和系统管理中获得更大的价值。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0108
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00