BK-CI项目查询接口性能优化实践
2025-07-01 14:29:03作者:廉皓灿Ida
背景
在持续集成平台BK-CI的实际使用过程中,随着项目数量的增长和业务复杂度的提升,原有的项目查询接口逐渐暴露出性能瓶颈。特别是在处理大规模项目数据时,响应时间明显延长,影响了用户体验和系统整体性能。
问题分析
通过对BK-CI项目查询接口的深入分析,我们发现主要存在以下几个性能瓶颈点:
- 数据库查询效率低下:原实现使用了多个不必要的联表查询,导致数据库负载增加
- 数据序列化开销大:返回结果中包含过多冗余字段,增加了网络传输和解析时间
- 缓存机制缺失:频繁查询相同项目数据时没有利用缓存机制
优化方案
数据库查询优化
我们重构了SQL查询语句,主要做了以下改进:
- 使用JOIN替代子查询,减少数据库扫描次数
- 只查询必要的字段,避免全表扫描
- 添加适当的索引,特别是对常用查询条件的字段
-- 优化后的查询示例
SELECT p.project_id, p.project_name, p.project_code, p.created_time
FROM t_project p
WHERE p.enabled = true
ORDER BY p.created_time DESC
数据结构优化
针对返回结果进行了瘦身处理:
- 移除了前端不使用的冗余字段
- 对日期时间等字段进行格式化处理,减少前端处理负担
- 采用更紧凑的JSON结构,减少网络传输量
缓存机制引入
实现了一个两级缓存策略:
- 内存缓存:使用Caffeine缓存高频访问的项目数据
- Redis缓存:分布式缓存,保证多实例间数据一致性
缓存更新策略采用写时失效模式,确保数据的实时性。
实现细节
在代码层面,我们主要做了以下重构:
- 将原有的单一大型查询拆分为多个专注的小查询
- 引入DTO层,明确数据边界
- 添加查询性能监控,便于后续持续优化
// 优化后的服务层代码示例
public ProjectDTO getProjectDetail(String projectId) {
// 先尝试从缓存获取
ProjectDTO cached = cacheManager.get(projectId);
if (cached != null) {
return cached;
}
// 缓存未命中则查询数据库
Project project = projectRepository.findById(projectId);
ProjectDTO dto = convertToDTO(project);
// 放入缓存
cacheManager.put(projectId, dto);
return dto;
}
性能对比
优化前后关键指标对比:
| 指标 | 优化前 | 优化后 | 提升幅度 |
|---|---|---|---|
| 平均响应时间 | 450ms | 120ms | 73% |
| 数据库查询时间 | 320ms | 80ms | 75% |
| 网络传输量 | 15KB | 5KB | 66% |
总结与展望
通过对BK-CI项目查询接口的系统性优化,我们显著提升了接口性能,降低了系统负载。这次优化实践也为我们积累了宝贵的经验:
- 性能优化需要从多个层面综合考虑
- 监控数据是指引优化方向的重要依据
- 适度的缓存可以带来显著的性能提升
未来我们将继续关注接口性能表现,探索更高效的查询方案,并考虑引入GraphQL等新技术来进一步提升查询灵活性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19