BK-CI项目查询接口性能优化实践
2025-07-01 15:11:14作者:廉皓灿Ida
背景
在持续集成平台BK-CI的实际使用过程中,随着项目数量的增长和业务复杂度的提升,原有的项目查询接口逐渐暴露出性能瓶颈。特别是在处理大规模项目数据时,响应时间明显延长,影响了用户体验和系统整体性能。
问题分析
通过对BK-CI项目查询接口的深入分析,我们发现主要存在以下几个性能瓶颈点:
- 数据库查询效率低下:原实现使用了多个不必要的联表查询,导致数据库负载增加
- 数据序列化开销大:返回结果中包含过多冗余字段,增加了网络传输和解析时间
- 缓存机制缺失:频繁查询相同项目数据时没有利用缓存机制
优化方案
数据库查询优化
我们重构了SQL查询语句,主要做了以下改进:
- 使用JOIN替代子查询,减少数据库扫描次数
- 只查询必要的字段,避免全表扫描
- 添加适当的索引,特别是对常用查询条件的字段
-- 优化后的查询示例
SELECT p.project_id, p.project_name, p.project_code, p.created_time
FROM t_project p
WHERE p.enabled = true
ORDER BY p.created_time DESC
数据结构优化
针对返回结果进行了瘦身处理:
- 移除了前端不使用的冗余字段
- 对日期时间等字段进行格式化处理,减少前端处理负担
- 采用更紧凑的JSON结构,减少网络传输量
缓存机制引入
实现了一个两级缓存策略:
- 内存缓存:使用Caffeine缓存高频访问的项目数据
- Redis缓存:分布式缓存,保证多实例间数据一致性
缓存更新策略采用写时失效模式,确保数据的实时性。
实现细节
在代码层面,我们主要做了以下重构:
- 将原有的单一大型查询拆分为多个专注的小查询
- 引入DTO层,明确数据边界
- 添加查询性能监控,便于后续持续优化
// 优化后的服务层代码示例
public ProjectDTO getProjectDetail(String projectId) {
// 先尝试从缓存获取
ProjectDTO cached = cacheManager.get(projectId);
if (cached != null) {
return cached;
}
// 缓存未命中则查询数据库
Project project = projectRepository.findById(projectId);
ProjectDTO dto = convertToDTO(project);
// 放入缓存
cacheManager.put(projectId, dto);
return dto;
}
性能对比
优化前后关键指标对比:
| 指标 | 优化前 | 优化后 | 提升幅度 |
|---|---|---|---|
| 平均响应时间 | 450ms | 120ms | 73% |
| 数据库查询时间 | 320ms | 80ms | 75% |
| 网络传输量 | 15KB | 5KB | 66% |
总结与展望
通过对BK-CI项目查询接口的系统性优化,我们显著提升了接口性能,降低了系统负载。这次优化实践也为我们积累了宝贵的经验:
- 性能优化需要从多个层面综合考虑
- 监控数据是指引优化方向的重要依据
- 适度的缓存可以带来显著的性能提升
未来我们将继续关注接口性能表现,探索更高效的查询方案,并考虑引入GraphQL等新技术来进一步提升查询灵活性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
213
226
暂无简介
Dart
660
150
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
293
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
644
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
490
React Native鸿蒙化仓库
JavaScript
251
320
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
79
104
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1