首页
/ Compose Samples项目中的Jetcaster应用架构解析

Compose Samples项目中的Jetcaster应用架构解析

2025-05-10 23:30:21作者:滕妙奇

从Jetcaster看Android官方架构与Clean Architecture的差异

在分析Compose Samples项目中的Jetcaster应用时,我们发现了一个值得深入探讨的架构设计问题。Jetcaster作为Jetpack Compose的示例应用,采用了模块化的项目结构,将代码分为Domain、Data和Mobile(Presentation)三个主要模块。

架构依赖关系的争议点

传统Clean Architecture理论强调依赖关系应该从外向内单向流动,即Presentation层可以依赖Domain层,Domain层可以依赖Data层,但内层不应该知道外层。这种设计确保了业务逻辑的核心部分(Domain层)不会受到外部实现细节的影响。

然而,Jetcaster的设计却打破了这一常规,在Domain模块的build.gradle.kts文件中明确声明了对Data模块的依赖。这种反向依赖关系引起了开发者社区的广泛讨论。

Android官方架构的立场

实际上,Jetcaster遵循的是Google官方推荐的Android应用架构指南。在这种架构中,Domain层被设计为可以依赖Data层,这与传统Clean Architecture的理念有所不同。官方架构更注重实用性和开发效率,认为在某些情况下允许Domain层了解数据源的具体实现可以简化开发流程。

两种架构的核心理念对比

  1. Clean Architecture

    • 强调严格的层级隔离
    • Domain层完全独立,不依赖任何框架或平台特定代码
    • 适合大型复杂项目,需要长期维护的场景
  2. Android官方架构

    • 更注重开发效率和实用性
    • 允许适度的依赖关系以简化实现
    • 适合大多数Android应用开发场景

实际开发中的选择建议

对于初学者或中小型项目,采用Android官方推荐的架构可能更为合适,因为它:

  • 学习曲线更平缓
  • 开发效率更高
  • 与Android生态系统的工具和库集成更好

而对于大型复杂项目或需要长期维护的代码库,严格的Clean Architecture可能提供更好的可维护性和可测试性优势。

总结

Jetcaster示例应用展示了一种平衡了理论严谨性和实际开发需求的架构方案。理解这种设计选择背后的考量,有助于开发者在实际项目中做出更合理的架构决策。无论选择哪种架构风格,保持代码的清晰组织和良好的测试覆盖率才是保证项目质量的关键。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8