PaddleClas图像分类任务中处理尺寸差异过大的训练集
在图像分类任务中,训练集图像尺寸差异过大是一个常见问题。PaddleClas框架提供了多种预处理方法来处理这种情况,但在实际应用中需要注意一些关键配置。
问题背景
当训练集中的图像长宽比例差异很大时,直接使用标准的预处理流程可能会导致模型训练失败。常见的错误包括"all input arrays must have the same shape",这表明输入图像的尺寸未能统一。
解决方案
1. 使用ResizeImage预处理
PaddleClas提供了ResizeImage预处理操作,可以通过设置resize_short参数来统一图像的短边长度:
transform_ops:
- ResizeImage:
resize_short: 48
这种方法会保持图像的长宽比例,将短边缩放到指定尺寸,长边按比例缩放。但需要注意,这可能导致不同图像的长边长度不一致。
2. 结合CropWithPadding操作
为了确保最终输入尺寸一致,可以结合使用CropWithPadding操作:
transform_ops:
- CropWithPadding:
prob: 0.2
padding_num: 0
size: [112, 112]
scale: [0.2, 1.0]
ratio: [0.75, 1.3333333333333333]
该操作会在保持长宽比的同时,对图像进行裁剪和填充,确保输出尺寸统一。
注意事项
-
预处理顺序:预处理操作的顺序很重要,通常应先进行缩放,再进行裁剪和其他增强操作。
-
长宽比处理:对于长宽比差异特别大的图像,可能需要调整裁剪比例参数(ratio)以适应不同比例的图像。
-
填充策略:可以调整padding_num参数来控制填充方式和填充值。
-
数据增强兼容性:在使用TimmAutoAugment等高级数据增强时,需要确保其配置与预处理后的图像尺寸兼容。
最佳实践建议
-
对于长宽比差异大的数据集,建议先使用ResizeImage统一短边,再使用CropWithPadding确保输入尺寸一致。
-
可以适当降低batch_size,减少因尺寸处理带来的内存压力。
-
监控预处理后的图像样本,确保预处理效果符合预期。
-
对于特别极端的长宽比,可能需要考虑自定义预处理逻辑或对数据集进行筛选。
通过合理配置预处理流程,PaddleClas能够有效处理尺寸差异大的训练集,为模型训练提供统一的输入格式。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00