dotnet/docs项目中Chat History示例代码的缺陷分析与修复
2025-06-13 20:45:12作者:邓越浪Henry
问题背景
在dotnet/docs项目的Microsoft Extensions AI文档中,提供了一个关于聊天历史记录的示例代码片段。该代码旨在展示如何使用流式响应处理聊天对话,并将对话历史保存下来。然而,原始代码中存在一个关键缺陷,导致无法正确记录聊天历史。
原始代码分析
原始代码片段的结构如下:
List<ChatMessage> chatHistory = [];
while (true)
{
Console.Write("Q: ");
chatHistory.Add(new(ChatRole.User, Console.ReadLine()));
List<ChatResponseUpdate> updates = [];
await foreach (ChatResponseUpdate update in
client.GetStreamingResponseAsync(history))
{
Console.Write(update);
}
Console.WriteLine();
chatHistory.AddMessages(updates);
}
这段代码的主要目的是:
- 创建一个空的聊天历史列表
- 进入无限循环,持续接收用户输入
- 将用户输入添加到聊天历史
- 获取AI的流式响应并显示
- 将AI响应更新添加到聊天历史
问题识别
代码中存在一个关键缺陷:在流式响应处理循环中,虽然将每个更新(update)输出到控制台,但没有将这些更新添加到updates列表中。这导致chatHistory.AddMessages(updates)实际上是在向聊天历史添加一个空列表,无法正确保存对话历史。
技术影响
这个缺陷会导致:
- 聊天历史记录不完整,只保存了用户输入,没有AI响应
- 后续对话可能缺乏上下文,因为历史记录不完整
- 影响聊天体验的连贯性
解决方案
修复方法很简单:在流式响应处理循环中,将每个update添加到updates列表中。修正后的代码如下:
List<ChatMessage> chatHistory = [];
while (true)
{
Console.Write("Q: ");
chatHistory.Add(new(ChatRole.User, Console.ReadLine()));
List<ChatResponseUpdate> updates = [];
await foreach (ChatResponseUpdate update in
client.GetStreamingResponseAsync(history))
{
Console.Write(update);
updates.Add(update); // 关键修复:将更新添加到列表
}
Console.WriteLine();
chatHistory.AddMessages(updates);
}
深入理解
流式响应处理
在AI聊天应用中,流式响应处理是一种常见的技术,它允许逐步接收和处理AI生成的响应,而不是等待完整响应生成完毕。这种方式能够:
- 提高用户体验,减少等待时间
- 允许逐步显示响应内容
- 更高效地处理长响应
聊天历史的重要性
完整的聊天历史记录对于:
- 维持对话上下文至关重要
- 支持多轮对话
- 提供连贯的聊天体验
- 可能用于后续的分析或训练
最佳实践建议
- 完整性检查:在处理流式响应时,确保所有关键数据都被正确收集
- 错误处理:考虑添加适当的错误处理机制,特别是在网络请求和流处理中
- 资源管理:对于长时间运行的聊天会话,考虑实施历史记录清理策略
- 性能考量:大量历史记录可能影响性能,需要权衡历史长度和性能
总结
这个示例代码的修复虽然简单,但体现了在流式处理场景中常见的一个陷阱:处理数据流时容易忽略数据的收集和保存。开发者在实现类似功能时,应当特别注意确保所有需要的数据都被正确处理和保存,而不仅仅是显示或使用。
通过这个案例,我们可以学到在编写流式处理代码时,数据收集和数据显示通常是两个独立但都需要关注的操作,不能因为已经处理了显示而忽略数据的持久化保存。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355