dotnet/docs项目中Chat History示例代码的缺陷分析与修复
2025-06-13 21:12:50作者:邓越浪Henry
问题背景
在dotnet/docs项目的Microsoft Extensions AI文档中,提供了一个关于聊天历史记录的示例代码片段。该代码旨在展示如何使用流式响应处理聊天对话,并将对话历史保存下来。然而,原始代码中存在一个关键缺陷,导致无法正确记录聊天历史。
原始代码分析
原始代码片段的结构如下:
List<ChatMessage> chatHistory = [];
while (true)
{
Console.Write("Q: ");
chatHistory.Add(new(ChatRole.User, Console.ReadLine()));
List<ChatResponseUpdate> updates = [];
await foreach (ChatResponseUpdate update in
client.GetStreamingResponseAsync(history))
{
Console.Write(update);
}
Console.WriteLine();
chatHistory.AddMessages(updates);
}
这段代码的主要目的是:
- 创建一个空的聊天历史列表
- 进入无限循环,持续接收用户输入
- 将用户输入添加到聊天历史
- 获取AI的流式响应并显示
- 将AI响应更新添加到聊天历史
问题识别
代码中存在一个关键缺陷:在流式响应处理循环中,虽然将每个更新(update)输出到控制台,但没有将这些更新添加到updates列表中。这导致chatHistory.AddMessages(updates)实际上是在向聊天历史添加一个空列表,无法正确保存对话历史。
技术影响
这个缺陷会导致:
- 聊天历史记录不完整,只保存了用户输入,没有AI响应
- 后续对话可能缺乏上下文,因为历史记录不完整
- 影响聊天体验的连贯性
解决方案
修复方法很简单:在流式响应处理循环中,将每个update添加到updates列表中。修正后的代码如下:
List<ChatMessage> chatHistory = [];
while (true)
{
Console.Write("Q: ");
chatHistory.Add(new(ChatRole.User, Console.ReadLine()));
List<ChatResponseUpdate> updates = [];
await foreach (ChatResponseUpdate update in
client.GetStreamingResponseAsync(history))
{
Console.Write(update);
updates.Add(update); // 关键修复:将更新添加到列表
}
Console.WriteLine();
chatHistory.AddMessages(updates);
}
深入理解
流式响应处理
在AI聊天应用中,流式响应处理是一种常见的技术,它允许逐步接收和处理AI生成的响应,而不是等待完整响应生成完毕。这种方式能够:
- 提高用户体验,减少等待时间
- 允许逐步显示响应内容
- 更高效地处理长响应
聊天历史的重要性
完整的聊天历史记录对于:
- 维持对话上下文至关重要
- 支持多轮对话
- 提供连贯的聊天体验
- 可能用于后续的分析或训练
最佳实践建议
- 完整性检查:在处理流式响应时,确保所有关键数据都被正确收集
- 错误处理:考虑添加适当的错误处理机制,特别是在网络请求和流处理中
- 资源管理:对于长时间运行的聊天会话,考虑实施历史记录清理策略
- 性能考量:大量历史记录可能影响性能,需要权衡历史长度和性能
总结
这个示例代码的修复虽然简单,但体现了在流式处理场景中常见的一个陷阱:处理数据流时容易忽略数据的收集和保存。开发者在实现类似功能时,应当特别注意确保所有需要的数据都被正确处理和保存,而不仅仅是显示或使用。
通过这个案例,我们可以学到在编写流式处理代码时,数据收集和数据显示通常是两个独立但都需要关注的操作,不能因为已经处理了显示而忽略数据的持久化保存。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
650
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
655
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216