FastApi-RESTful项目中的类资源(Resource)使用指南
什么是类资源(Resource)
在FastApi-RESTful项目中,类资源(Resource)是一种面向对象的API开发方式,它借鉴了Flask-RESTful的设计理念,允许开发者通过类继承的方式来组织API端点。这种方式特别适合需要快速构建CRUD应用的场景,同时也保持了良好的代码组织结构。
基本使用方法
要创建一个资源类,只需继承自Resource基类,然后定义HTTP方法对应的类方法:
from fastapi_restful.cbv_base import Resource
class UserResource(Resource):
async def get(self):
return {"message": "Hello World"}
然后在主应用文件中注册这个资源:
from fastapi import FastAPI
from fastapi_restful.api import Api
app = FastAPI()
api = Api(app)
api.add_resource(UserResource, "/user")
这样就创建了一个简单的GET端点,访问/user将返回{"message": "Hello World"}。
高级功能
1. 依赖注入
在实际开发中,我们经常需要注入各种依赖,如数据库连接、配置信息等。由于资源类的初始化发生在添加到API之前,我们可以直接在构造函数中注入这些依赖:
class UserResource(Resource):
def __init__(self, db_connection):
self.db = db_connection
async def get(self):
users = await self.db.fetch_users()
return {"users": users}
然后在注册资源时传入依赖:
db_connection = DatabaseConnection()
api.add_resource(UserResource, "/user", resource_kwargs={"db_connection": db_connection})
2. 响应声明
FastAPI的一个强大特性是自动生成的Swagger文档。我们可以使用@set_responses装饰器来声明API的各种响应:
from fastapi_restful.cbv_base import set_responses
from fastapi import status
class UserResource(Resource):
@set_responses(
status_code=status.HTTP_200_OK,
response_model=UserModel,
responses={
status.HTTP_404_NOT_FOUND: {
"description": "User not found",
"model": ErrorModel
},
status.HTTP_401_UNAUTHORIZED: {
"description": "Unauthorized",
"model": ErrorModel
}
}
)
async def get(self, user_id: int):
user = await self.db.get_user(user_id)
if not user:
raise HTTPException(status_code=404, detail="User not found")
return user
@set_responses装饰器支持所有FastAPI原生的响应参数,包括各种响应模型和状态码描述。
最佳实践
-
资源划分:按照业务领域划分资源类,每个资源类处理一个特定的业务实体(如用户、订单等)。
-
方法组织:在资源类中,使用不同的HTTP方法对应不同的操作(GET获取、POST创建、PUT更新等)。
-
错误处理:在资源方法中使用适当的异常处理,并通过
@set_responses声明可能的错误响应。 -
依赖管理:将外部依赖通过构造函数注入,保持资源类的可测试性。
-
响应模型:为每个端点定义清晰的响应模型,这有助于生成准确的API文档。
总结
FastApi-RESTful中的类资源提供了一种结构化的方式来组织API端点,特别适合中大型项目的开发。它结合了面向对象编程的优势和FastAPI的强大功能,使API开发更加高效和可维护。通过合理使用依赖注入和响应声明,可以构建出既强大又易于理解的RESTful API。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00