Azure-Samples/azure-search-openai-demo项目中DataLake Gen2文件系统路径配置问题解析
在Azure-Samples/azure-search-openai-demo项目中,当用户尝试使用预定义的DataLake Gen2文件系统和路径配置时,可能会遇到脚本无法正确识别环境变量的问题。这个问题主要出现在prepdocs.ps1脚本中,该脚本用于准备文档数据并将其上传到Azure存储服务。
问题背景
项目中的LoginAndAclSetup文档提到了两个关键环境变量:
- AZURE_ADLS_GEN2_FILESYSTEM
- AZURE_ADLS_GEN2_FILESYSTEM_PATH
这些变量本应用于指定现有的DataLake Gen2文件系统及其路径,以便存储带有访问控制列表的样本数据。然而,实际执行时,prepdocs.ps1脚本却使用了不同的变量名:
- ADLS_GEN2_FILESYSTEM
- ADLS_GEN2_FILESYSTEM_PATH
这种命名不一致导致脚本无法正确识别用户预先配置的环境变量,从而无法将文档数据上传到预期的DataLake Gen2位置。
技术细节分析
在PowerShell脚本(prepdocs.ps1)和Shell脚本(prepdocs.sh)中,对DataLake Gen2文件系统和路径的处理存在差异:
-
PowerShell脚本(prepdocs.ps1)直接使用了ADLS_GEN2_FILESYSTEM和ADLS_GEN2_FILESYSTEM_PATH变量名,而没有考虑文档中提到的AZURE前缀版本。
-
Shell脚本(prepdocs.sh)则正确地映射了环境变量,能够识别AZURE_ADLS_GEN2_FILESYSTEM和AZURE_ADLS_GEN2_FILESYSTEM_PATH变量。
-
文档中的环境变量参考部分还包含了一些实际上未被使用的变量名(带有STORAGE字样的版本),这可能会进一步混淆用户。
解决方案
对于遇到此问题的用户,可以采取以下临时解决方案:
-
在使用prepdocs.ps1脚本时,确保设置的是ADLS_GEN2_FILESYSTEM和ADLS_GEN2_FILESYSTEM_PATH变量,而不是文档中提到的AZURE前缀版本。
-
或者考虑使用prepdocs.sh脚本,该脚本能够正确识别文档中提到的变量名。
-
等待项目维护者发布修复版本,统一变量命名规范。
最佳实践建议
在使用Azure存储服务时,特别是涉及多种存储类型(如Blob存储和DataLake Gen2)时,建议:
-
仔细检查环境变量命名是否与脚本实际使用的名称一致。
-
在跨平台使用时(Windows/Linux),注意不同脚本可能对环境变量的处理方式不同。
-
对于复杂的存储配置,可以先通过简单的测试验证环境变量是否被正确识别。
-
关注项目更新,及时获取最新的修复和改进。
项目维护者已经确认了这个问题,并表示会进行修复。用户在使用过程中应当注意这一暂时性的不一致问题,以确保数据能够正确上传到预期的存储位置。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00