Fugue项目教程:深入理解数据连接操作
2025-06-10 12:54:55作者:盛欣凯Ernestine
引言
在数据处理领域,数据连接(Join)是最基础也是最关键的操作之一。Fugue作为一个分布式计算框架抽象层,提供了跨引擎的统一数据连接接口。本文将全面介绍Fugue中的各种连接操作,帮助读者掌握在不同计算引擎下执行数据连接的方法。
连接类型概述
Fugue支持以下七种标准连接类型:
- LEFT OUTER(左外连接)
- RIGHT OUTER(右外连接)
- CROSS(交叉连接)
- LEFT SEMI(左半连接)
- LEFT ANTI(左反连接)
- INNER(内连接)
- FULL OUTER(全外连接)
基本连接操作
列名冲突处理
在实际工作中,经常遇到连接的两个DataFrame存在同名列的情况。Fugue提供了rename()函数来解决这个问题:
import pandas as pd
import fugue.api as fa
df1 = pd.DataFrame({"id": ["a","b"], "val1": [1,2]})
df2 = pd.DataFrame({"id": ["a","b"], "val1": [2,3]})
# 使用rename解决列名冲突
result = fa.join(
df1,
fa.rename(df2, {"val1":"val2"}),
how="left_outer",
on=["id"]
)
多引擎支持
Fugue的强大之处在于可以指定不同的计算引擎执行相同的操作。例如使用Dask引擎:
# 使用Dask引擎执行连接
res = fa.join(
df1,
fa.rename(df2, {"val1":"val2"}),
how="left_outer",
on=["id"],
engine="dask"
)
# Dask执行是惰性的,需要调用compute()
res.compute().head()
或者使用上下文管理器指定引擎:
with fa.engine_context("dask"):
res = fa.join(df1, fa.rename(df2, {"val1":"val2"}), how="left_outer", on=["id"])
fa.show(res)
SQL与Pandas连接行为差异
NULL值处理
在处理NULL值时,SQL和Pandas有显著差异。Fugue遵循SQL标准:
df1 = pd.DataFrame({'a': [None, "a"], 'b': [1, 2]})
df2 = pd.DataFrame({'a': [None, "a"], 'b': [1, 2]})
# Pandas行为:保留NULL行
print(df1.merge(df2, how="inner", on=["a", "b"]))
# Fugue行为(SQL标准):排除NULL行
print(fa.join(df1, df2, how="inner", on=["a","b"]))
多表连接
Fugue支持一次性连接多个DataFrame,前提是它们没有列名冲突:
df1 = pd.DataFrame({"a": [1], "b": [2]})
df2 = pd.DataFrame({"a": [1], "c": [3]})
df3 = pd.DataFrame({"a": [1], "d": [4]})
df4 = pd.DataFrame({"a": [1], "e": [5]})
# 多表连接
fa.join(df1, df2, df3, df4, how="inner", on=["a"])
集合操作
除了连接,Fugue还支持标准的集合操作:
1. 并集(UNION)
df1 = pd.DataFrame({"a": [0,1], "b": [1,2]})
df2 = pd.DataFrame({"a": [0,0,1], "b": [1,1,2]})
# 默认去重
fa.union(df1, df2)
# 保留所有记录
fa.union(df1, df2, distinct=False)
2. 交集(INTERSECT)
# 获取两个DataFrame共有的记录
fa.intersect(df1, df2)
3. 差集(SUBTRACT)
# 获取df1中有而df2中没有的记录
fa.subtract(df1, df2)
最佳实践建议
- 明确指定连接列:虽然Fugue可以推断连接列,但显式指定
on参数更安全 - 注意NULL处理:根据业务需求理解NULL在连接中的行为
- 利用引擎上下文:对于多个操作使用相同引擎时,
engine_context可以提高代码可读性 - 处理列名冲突:使用
rename()提前解决潜在的列名冲突问题
总结
Fugue提供了一套统一的API来处理各种数据连接和集合操作,这些操作可以在Pandas、Spark、Dask等不同引擎上执行。通过本文的介绍,读者应该能够:
- 理解Fugue支持的各种连接类型
- 掌握处理列名冲突的方法
- 了解在不同计算引擎上执行连接操作的方式
- 认识SQL与Pandas在连接行为上的差异
- 使用集合操作进行数据整合
这些功能使得Fugue成为跨引擎数据处理的有力工具,特别是在需要灵活切换执行环境的场景下。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134