Obsidian Web Clipper HTML处理过滤器行为解析与修复
Obsidian Web Clipper工具中的HTML处理过滤器在0.9.5版本中存在两个关键行为异常,这些问题已在0.10.3版本中得到修复。本文将深入分析这些问题的技术细节及其解决方案。
过滤器异常行为分析
在原始实现中,strip_attr和strip_tags两个过滤器表现出不符合预期的行为:
-
属性过滤异常:当使用
strip_attr:("class")语法时,过滤器会错误地移除所有HTML属性,而非仅针对class属性或保留class属性。 -
标签过滤异常:类似地,
strip_tags:("b")会错误地移除所有HTML标签属性,而不是仅处理指定的<b>标签或保留<b>标签。
预期行为与技术实现
经过修复后,这两个过滤器现在表现出以下正确行为:
-
strip_attr过滤器:当使用
strip_attr:"class"语法时,该过滤器会保留指定的class属性,同时移除其他所有属性。这种"保留指定"而非"移除指定"的行为模式需要注意。 -
strip_tags过滤器:使用
strip_tags:"b"语法时,过滤器会保留指定的<b>标签,同时移除其他所有HTML标签。同样采用了"保留指定"的行为模式。
使用注意事项
开发者需要注意以下关键点:
-
语法格式:过滤器参数应直接使用引号包裹(
"param"),而非括号加引号(("param"))的形式。后者在早期版本中会导致异常行为。 -
行为模式:这两个过滤器采用"保留指定内容"而非"移除指定内容"的逻辑,这与一些用户的直觉可能相反。例如,
strip_tags:"b"实际上是"只保留b标签"而非"移除b标签"。 -
版本兼容性:0.10.3版本已修复这些问题,建议用户升级至此版本或更高版本以获得正确的过滤行为。
技术建议
对于需要在Obsidian中处理HTML内容的用户,建议:
- 明确理解过滤器的保留逻辑,避免混淆
- 使用简单的参数格式(
"param")而非复杂格式(("param")) - 在复杂HTML处理场景中,可以先在小范围测试过滤效果
- 考虑结合多个过滤器实现精确的HTML内容控制
这些修复显著提升了Obsidian Web Clipper处理HTML内容的可靠性和一致性,为用户提供了更强大的网页内容抓取和处理能力。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00