GitHub Codespaces Jupyter 使用教程
项目介绍
GitHub Codespaces Jupyter 是一个基于 GitHub Codespaces 的开源项目,旨在为开发者提供一个快速、便捷的 Jupyter Notebook 开发环境。通过该项目,用户可以在云端创建和配置 Jupyter Notebook 环境,无需在本地安装复杂的开发工具和依赖项。
项目快速启动
克隆项目
首先,克隆 GitHub Codespaces Jupyter 项目到你的 GitHub 账户:
git clone https://github.com/github/codespaces-jupyter.git
创建 Codespace
进入项目仓库页面,点击 "Code" 按钮,选择 "Open with Codespaces",然后点击 "New codespace" 创建一个新的 Codespace 环境。
启动 Jupyter Notebook
在 Codespace 环境中,打开终端并运行以下命令启动 Jupyter Notebook:
jupyter notebook
访问 Jupyter Notebook
启动成功后,终端会显示一个 URL,点击该 URL 即可在浏览器中访问 Jupyter Notebook 界面。
应用案例和最佳实践
数据分析
GitHub Codespaces Jupyter 非常适合进行数据分析工作。用户可以在 Jupyter Notebook 中编写和运行 Python 代码,进行数据清洗、可视化和模型训练等操作。
机器学习
对于机器学习项目,GitHub Codespaces Jupyter 提供了一个强大的开发环境。用户可以利用 Jupyter Notebook 进行模型训练、评估和调优,同时享受 Codespaces 提供的云端计算资源。
教学和演示
教师和演讲者可以使用 GitHub Codespaces Jupyter 进行在线教学和演示。通过 Jupyter Notebook 的交互式界面,学生和观众可以实时查看代码运行结果,提高教学和演示的互动性。
典型生态项目
TensorFlow
TensorFlow 是一个广泛使用的机器学习框架,与 GitHub Codespaces Jupyter 结合使用,可以快速搭建和训练机器学习模型。
Pandas
Pandas 是一个强大的数据处理库,与 Jupyter Notebook 结合使用,可以高效地进行数据分析和处理。
Matplotlib
Matplotlib 是一个常用的数据可视化库,与 Jupyter Notebook 结合使用,可以创建丰富的图表和图形,帮助用户更好地理解数据。
通过以上模块的介绍和实践,用户可以快速上手 GitHub Codespaces Jupyter 项目,并在实际开发中发挥其强大的功能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00