GitHub Codespaces Jupyter 使用教程
项目介绍
GitHub Codespaces Jupyter 是一个基于 GitHub Codespaces 的开源项目,旨在为开发者提供一个快速、便捷的 Jupyter Notebook 开发环境。通过该项目,用户可以在云端创建和配置 Jupyter Notebook 环境,无需在本地安装复杂的开发工具和依赖项。
项目快速启动
克隆项目
首先,克隆 GitHub Codespaces Jupyter 项目到你的 GitHub 账户:
git clone https://github.com/github/codespaces-jupyter.git
创建 Codespace
进入项目仓库页面,点击 "Code" 按钮,选择 "Open with Codespaces",然后点击 "New codespace" 创建一个新的 Codespace 环境。
启动 Jupyter Notebook
在 Codespace 环境中,打开终端并运行以下命令启动 Jupyter Notebook:
jupyter notebook
访问 Jupyter Notebook
启动成功后,终端会显示一个 URL,点击该 URL 即可在浏览器中访问 Jupyter Notebook 界面。
应用案例和最佳实践
数据分析
GitHub Codespaces Jupyter 非常适合进行数据分析工作。用户可以在 Jupyter Notebook 中编写和运行 Python 代码,进行数据清洗、可视化和模型训练等操作。
机器学习
对于机器学习项目,GitHub Codespaces Jupyter 提供了一个强大的开发环境。用户可以利用 Jupyter Notebook 进行模型训练、评估和调优,同时享受 Codespaces 提供的云端计算资源。
教学和演示
教师和演讲者可以使用 GitHub Codespaces Jupyter 进行在线教学和演示。通过 Jupyter Notebook 的交互式界面,学生和观众可以实时查看代码运行结果,提高教学和演示的互动性。
典型生态项目
TensorFlow
TensorFlow 是一个广泛使用的机器学习框架,与 GitHub Codespaces Jupyter 结合使用,可以快速搭建和训练机器学习模型。
Pandas
Pandas 是一个强大的数据处理库,与 Jupyter Notebook 结合使用,可以高效地进行数据分析和处理。
Matplotlib
Matplotlib 是一个常用的数据可视化库,与 Jupyter Notebook 结合使用,可以创建丰富的图表和图形,帮助用户更好地理解数据。
通过以上模块的介绍和实践,用户可以快速上手 GitHub Codespaces Jupyter 项目,并在实际开发中发挥其强大的功能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00