nnUNet模型训练与推理实践指南
2025-06-02 21:36:27作者:郁楠烈Hubert
模型训练与推理流程解析
在医学图像分割领域,nnUNet作为一款优秀的自配置深度学习工具,其训练和推理流程需要遵循特定的规范。本文将以一个实际案例为基础,详细介绍如何正确使用nnUNet进行模型训练和推理。
模型训练阶段
使用nnUNet进行模型训练时,典型的命令格式为:
nnUNetv2_train 1 3d_fullres all --npz
这个命令表示对数据集1进行3D全分辨率训练,使用'all'模式生成单一模型而非交叉验证的多个模型,并保存概率图(--npz参数)。
训练完成后,系统会在预定义的输出目录中生成模型文件和相关配置文件。值得注意的是,即使指定了'all'参数,系统仍会保留与交叉验证相关的文件夹结构,但这不影响单模型的使用。
推理阶段常见问题
在进行新数据推理时,用户可能会遇到如下错误:
IndexError: list index out of range
这个错误通常源于输入数据的命名不规范,而非模型本身的问题。nnUNet要求输入数据的命名必须包含模态信息,这是系统识别和处理多模态数据的关键。
数据命名规范详解
训练数据通常遵循以下结构:
数据集编号/
├── dataset.json
├── imagesTr/
│ ├── case1_0000.nii.gz # 第一个模态
│ ├── case1_0001.nii.gz # 第二个模态(如有)
├── labelsTr/
│ ├── case1.nii.gz
对于推理数据,必须保持相同的命名约定。如果原始训练数据使用单模态(后缀_0000),那么推理数据也必须添加相应的后缀:
推理数据/
├── new_case1_0000.nii.gz
├── new_case2_0000.nii.gz
最佳实践建议
- 数据一致性:确保推理数据的模态顺序、分辨率和方向与训练数据一致
- 命名规范:严格按照_0000、_0001等后缀标识不同模态
- 文件结构:虽然推理时不需完整复制训练时的目录结构,但单个文件命名必须规范
- 错误排查:遇到推理错误时,首先检查数据命名是否符合要求
通过遵循这些规范,用户可以充分利用nnUNet的强大分割能力,获得准确的预测结果。记住,规范的命名不仅是nnUNet的要求,也是良好数据管理实践的重要组成部分。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1