ONNX项目中INT4张量负值存储异常问题分析
2025-05-12 12:46:17作者:伍霜盼Ellen
ONNX(Open Neural Network Exchange)作为深度学习模型的开源格式标准,其张量存储机制一直是开发者关注的重点。近期在ONNX项目中发现了一个关于INT4数据类型存储的异常问题,本文将深入分析该问题的技术细节、产生原因及解决方案。
问题现象
当使用onnx.helper.make_tensor()创建包含负值的INT4张量时,发现生成的TensorProto字节大小异常增大,达到预期大小的5倍。具体表现为:
- 创建一个包含4096个-4值的INT4张量
- 预期存储大小约为4096字节
- 实际存储大小达到20492字节
- 通过
hex(tensor_x.int32_data[0])检查发现值为'-0x34'而非预期的'0xcc'
技术背景
在ONNX中,INT4数据类型采用特殊的存储方式:
- 每个INT4值占用4位(半字节)
- 两个INT4值会被打包成一个字节(8位)存储
- 对于INT4张量,ONNX使用
int32_data字段而非raw_data字段
根本原因分析
经过深入分析,发现问题源于两个关键因素:
-
数据类型处理不当:
make_tensor()函数错误地将两个INT4值打包为np.int8类型- 正确的做法应该是使用
np.uint8类型,无论对于INT4还是UINT4都应如此
-
Protobuf编码特性:
- Protobuf对负值采用变长编码(varint)
- 一个
uint8值(0-255)仅需2字节编码(1字节标签+1字节数据) - 而负的
int8值需要10字节编码(如-0x34编码为0xffffffffffffffcc)
影响范围
该问题会影响以下场景:
- 所有包含负值的INT4张量
- 使用
int32_data字段存储的INT4张量(不使用raw_data字段的情况) - 模型序列化后的文件大小显著增大
解决方案
正确的实现应该:
- 始终将两个INT4值打包为
np.uint8类型 - 确保
int32_data中的每个元素都是不透明的uint8值,且高位(31:8位)为零 - 这样Protobuf可以每个元素用1字节标签+1字节数据的方式序列化
验证方法
开发者可以通过以下方式验证修复效果:
# 创建测试数据
data = np.array([-4] * 4096, dtype=np.int8)
shape = (4096,)
# 创建张量
tensor_x = onnx.helper.make_tensor("x", onnx.TensorProto.INT4, shape, data)
# 验证
assert hex(tensor_x.int32_data[0]) == '0xcc' # 应得到0xcc而非-0x34
assert tensor_x.ByteSize() ≈ 4107 # 预期大小约为4096字节
总结
ONNX中INT4张量的负值存储异常问题揭示了底层数据类型处理和Protobuf编码交互的复杂性。正确理解和使用无符号类型对于紧凑存储至关重要。此问题的修复不仅减小了模型文件大小,也保证了数据编码的正确性,对需要高效存储INT4量化模型的场景尤为重要。开发者在使用ONNX的INT4数据类型时,应当注意检查负值的处理方式,确保获得预期的存储效率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355