ONNX项目中INT4张量负值存储异常问题分析
2025-05-12 12:46:17作者:伍霜盼Ellen
ONNX(Open Neural Network Exchange)作为深度学习模型的开源格式标准,其张量存储机制一直是开发者关注的重点。近期在ONNX项目中发现了一个关于INT4数据类型存储的异常问题,本文将深入分析该问题的技术细节、产生原因及解决方案。
问题现象
当使用onnx.helper.make_tensor()创建包含负值的INT4张量时,发现生成的TensorProto字节大小异常增大,达到预期大小的5倍。具体表现为:
- 创建一个包含4096个-4值的INT4张量
- 预期存储大小约为4096字节
- 实际存储大小达到20492字节
- 通过
hex(tensor_x.int32_data[0])检查发现值为'-0x34'而非预期的'0xcc'
技术背景
在ONNX中,INT4数据类型采用特殊的存储方式:
- 每个INT4值占用4位(半字节)
- 两个INT4值会被打包成一个字节(8位)存储
- 对于INT4张量,ONNX使用
int32_data字段而非raw_data字段
根本原因分析
经过深入分析,发现问题源于两个关键因素:
-
数据类型处理不当:
make_tensor()函数错误地将两个INT4值打包为np.int8类型- 正确的做法应该是使用
np.uint8类型,无论对于INT4还是UINT4都应如此
-
Protobuf编码特性:
- Protobuf对负值采用变长编码(varint)
- 一个
uint8值(0-255)仅需2字节编码(1字节标签+1字节数据) - 而负的
int8值需要10字节编码(如-0x34编码为0xffffffffffffffcc)
影响范围
该问题会影响以下场景:
- 所有包含负值的INT4张量
- 使用
int32_data字段存储的INT4张量(不使用raw_data字段的情况) - 模型序列化后的文件大小显著增大
解决方案
正确的实现应该:
- 始终将两个INT4值打包为
np.uint8类型 - 确保
int32_data中的每个元素都是不透明的uint8值,且高位(31:8位)为零 - 这样Protobuf可以每个元素用1字节标签+1字节数据的方式序列化
验证方法
开发者可以通过以下方式验证修复效果:
# 创建测试数据
data = np.array([-4] * 4096, dtype=np.int8)
shape = (4096,)
# 创建张量
tensor_x = onnx.helper.make_tensor("x", onnx.TensorProto.INT4, shape, data)
# 验证
assert hex(tensor_x.int32_data[0]) == '0xcc' # 应得到0xcc而非-0x34
assert tensor_x.ByteSize() ≈ 4107 # 预期大小约为4096字节
总结
ONNX中INT4张量的负值存储异常问题揭示了底层数据类型处理和Protobuf编码交互的复杂性。正确理解和使用无符号类型对于紧凑存储至关重要。此问题的修复不仅减小了模型文件大小,也保证了数据编码的正确性,对需要高效存储INT4量化模型的场景尤为重要。开发者在使用ONNX的INT4数据类型时,应当注意检查负值的处理方式,确保获得预期的存储效率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
479
3.57 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
暂无简介
Dart
730
176
React Native鸿蒙化仓库
JavaScript
289
341
Ascend Extension for PyTorch
Python
290
322
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
仓颉编程语言运行时与标准库。
Cangjie
149
885
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
452