ONNX项目中INT4张量负值存储异常问题分析
2025-05-12 02:03:25作者:伍霜盼Ellen
ONNX(Open Neural Network Exchange)作为深度学习模型的开源格式标准,其张量存储机制一直是开发者关注的重点。近期在ONNX项目中发现了一个关于INT4数据类型存储的异常问题,本文将深入分析该问题的技术细节、产生原因及解决方案。
问题现象
当使用onnx.helper.make_tensor()创建包含负值的INT4张量时,发现生成的TensorProto字节大小异常增大,达到预期大小的5倍。具体表现为:
- 创建一个包含4096个-4值的INT4张量
- 预期存储大小约为4096字节
- 实际存储大小达到20492字节
- 通过
hex(tensor_x.int32_data[0])检查发现值为'-0x34'而非预期的'0xcc'
技术背景
在ONNX中,INT4数据类型采用特殊的存储方式:
- 每个INT4值占用4位(半字节)
- 两个INT4值会被打包成一个字节(8位)存储
- 对于INT4张量,ONNX使用
int32_data字段而非raw_data字段
根本原因分析
经过深入分析,发现问题源于两个关键因素:
-
数据类型处理不当:
make_tensor()函数错误地将两个INT4值打包为np.int8类型- 正确的做法应该是使用
np.uint8类型,无论对于INT4还是UINT4都应如此
-
Protobuf编码特性:
- Protobuf对负值采用变长编码(varint)
- 一个
uint8值(0-255)仅需2字节编码(1字节标签+1字节数据) - 而负的
int8值需要10字节编码(如-0x34编码为0xffffffffffffffcc)
影响范围
该问题会影响以下场景:
- 所有包含负值的INT4张量
- 使用
int32_data字段存储的INT4张量(不使用raw_data字段的情况) - 模型序列化后的文件大小显著增大
解决方案
正确的实现应该:
- 始终将两个INT4值打包为
np.uint8类型 - 确保
int32_data中的每个元素都是不透明的uint8值,且高位(31:8位)为零 - 这样Protobuf可以每个元素用1字节标签+1字节数据的方式序列化
验证方法
开发者可以通过以下方式验证修复效果:
# 创建测试数据
data = np.array([-4] * 4096, dtype=np.int8)
shape = (4096,)
# 创建张量
tensor_x = onnx.helper.make_tensor("x", onnx.TensorProto.INT4, shape, data)
# 验证
assert hex(tensor_x.int32_data[0]) == '0xcc' # 应得到0xcc而非-0x34
assert tensor_x.ByteSize() ≈ 4107 # 预期大小约为4096字节
总结
ONNX中INT4张量的负值存储异常问题揭示了底层数据类型处理和Protobuf编码交互的复杂性。正确理解和使用无符号类型对于紧凑存储至关重要。此问题的修复不仅减小了模型文件大小,也保证了数据编码的正确性,对需要高效存储INT4量化模型的场景尤为重要。开发者在使用ONNX的INT4数据类型时,应当注意检查负值的处理方式,确保获得预期的存储效率。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
25