Kernel Memory 教程
2024-08-10 20:01:21作者:郁楠烈Hubert
1. 项目介绍
Kernel Memory(KM)是一个多模态的人工智能服务,专注于通过自定义的连续数据混合管道高效地索引数据集。它支持检索增强生成(RAG)和合成内存提示功能。作为一个专为特定人工智能和大型语言模型应用场景设计的服务,KM 可以无缝集成到如 Semantic Kernel、Microsoft Copilot 和 ChatGPT 等平台的应用中,提供数据驱动的功能增强。
2. 项目快速启动
要启动 Kernel Memory 服务,首先确保您已经安装了 .NET 环境。接下来,按照以下步骤操作:
安装依赖
克隆项目到本地:
git clone https://github.com/microsoft/kernel-memory.git
cd kernel-memory
然后使用 dotnet 命令来构建和运行项目:
dotnet build
dotnet run
快速测试
一旦服务启动,您可以使用提供的示例客户端进行测试,例如 C# 示例:
创建一个名为 test.cs 的文件,并添加以下代码:
using System;
using System.Net.Http;
using System.Text;
using KernelMemory;
// 替换为实际的服务端点
var endpoint = "http://localhost:5000";
var client = new HttpClient();
client.DefaultRequestHeaders.Add("X-API-Key", "your-api-key"); // 使用您的服务 API 密钥
// 存储记忆
var storeMemoryRequest = new StoreMemoryRequest {
    Data = "<memory-content>", // 替换为你要存储的内容
    Tags = new[] { "tag1", "tag2" } // 可选标签
};
var storeResponse = await client.PostAsJsonAsync(endpoint + "/store", storeMemoryRequest);
// 提问查询
var question = "你的服务是做什么的?";
var answerRequest = new AnswerQuestionRequest {
    Question = question,
};
var answerResponse = await client.PostAsJsonAsync(endpoint + "/answer", answerRequest);
Console.WriteLine($"问:{question}");
Console.WriteLine($"答:{await answerResponse.Content.ReadAsStringAsync()}");
替换 your-api-key 为您的服务 API 密钥,并在 Data 字符串中放入要存储的实际内容。运行 test.cs 文件并查看输出结果。
3. 应用案例和最佳实践
Kernel Memory 可用于多个场景:
- 知识库问答:利用自然语言处理能力,以文本形式向用户返回从索引数据中获取的答案。
 - 文档检索:通过 RAG 模式,结合上下文生成更准确的搜索结果。
 - 插件集成:无缝集成到 ChatGPT、Semantic Kernel 等现有工具中,增强其功能。
 - 安全过滤:通过内置的安全过滤器保护用户数据。
 
最佳实践包括:
- 分片和分区:大容量数据应按逻辑或时间顺序分片,以便于管理和提高查询效率。
 - 自定义提示:针对特定业务场景定制生成记忆的提示,优化结果质量。
 - 异步处理:利用异步模式批量处理文档,避免阻塞应用程序。
 
4. 典型生态项目
Kernel Memory 可与其他技术栈结合使用,例如:
- Azure AI Search:作为后台搜索引擎提升性能。
 - Qdrant:用于分布式向量数据库管理。
 - PostgreSQL / Elastic Search:作为关系型或非关系型数据库存储索引数据。
 - Redis:用于缓存或快速访问的数据结构存储。
 - RabbitMQ / Azure Queues:实现消息队列,保证服务间的解耦和异步通信。
 
这些组件可以共同构建复杂的人工智能解决方案。
结语
Kernel Memory 是一个强大的工具,用于构建基于自然语言查询的智能应用。了解和掌握它的核心概念和实践将帮助您构建更高效、更智能的应用程序。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445