Kernel Memory 教程
2024-08-10 20:01:21作者:郁楠烈Hubert
1. 项目介绍
Kernel Memory(KM)是一个多模态的人工智能服务,专注于通过自定义的连续数据混合管道高效地索引数据集。它支持检索增强生成(RAG)和合成内存提示功能。作为一个专为特定人工智能和大型语言模型应用场景设计的服务,KM 可以无缝集成到如 Semantic Kernel、Microsoft Copilot 和 ChatGPT 等平台的应用中,提供数据驱动的功能增强。
2. 项目快速启动
要启动 Kernel Memory 服务,首先确保您已经安装了 .NET 环境。接下来,按照以下步骤操作:
安装依赖
克隆项目到本地:
git clone https://github.com/microsoft/kernel-memory.git
cd kernel-memory
然后使用 dotnet
命令来构建和运行项目:
dotnet build
dotnet run
快速测试
一旦服务启动,您可以使用提供的示例客户端进行测试,例如 C# 示例:
创建一个名为 test.cs
的文件,并添加以下代码:
using System;
using System.Net.Http;
using System.Text;
using KernelMemory;
// 替换为实际的服务端点
var endpoint = "http://localhost:5000";
var client = new HttpClient();
client.DefaultRequestHeaders.Add("X-API-Key", "your-api-key"); // 使用您的服务 API 密钥
// 存储记忆
var storeMemoryRequest = new StoreMemoryRequest {
Data = "<memory-content>", // 替换为你要存储的内容
Tags = new[] { "tag1", "tag2" } // 可选标签
};
var storeResponse = await client.PostAsJsonAsync(endpoint + "/store", storeMemoryRequest);
// 提问查询
var question = "你的服务是做什么的?";
var answerRequest = new AnswerQuestionRequest {
Question = question,
};
var answerResponse = await client.PostAsJsonAsync(endpoint + "/answer", answerRequest);
Console.WriteLine($"问:{question}");
Console.WriteLine($"答:{await answerResponse.Content.ReadAsStringAsync()}");
替换 your-api-key
为您的服务 API 密钥,并在 Data
字符串中放入要存储的实际内容。运行 test.cs
文件并查看输出结果。
3. 应用案例和最佳实践
Kernel Memory 可用于多个场景:
- 知识库问答:利用自然语言处理能力,以文本形式向用户返回从索引数据中获取的答案。
- 文档检索:通过 RAG 模式,结合上下文生成更准确的搜索结果。
- 插件集成:无缝集成到 ChatGPT、Semantic Kernel 等现有工具中,增强其功能。
- 安全过滤:通过内置的安全过滤器保护用户数据。
最佳实践包括:
- 分片和分区:大容量数据应按逻辑或时间顺序分片,以便于管理和提高查询效率。
- 自定义提示:针对特定业务场景定制生成记忆的提示,优化结果质量。
- 异步处理:利用异步模式批量处理文档,避免阻塞应用程序。
4. 典型生态项目
Kernel Memory 可与其他技术栈结合使用,例如:
- Azure AI Search:作为后台搜索引擎提升性能。
- Qdrant:用于分布式向量数据库管理。
- PostgreSQL / Elastic Search:作为关系型或非关系型数据库存储索引数据。
- Redis:用于缓存或快速访问的数据结构存储。
- RabbitMQ / Azure Queues:实现消息队列,保证服务间的解耦和异步通信。
这些组件可以共同构建复杂的人工智能解决方案。
结语
Kernel Memory 是一个强大的工具,用于构建基于自然语言查询的智能应用。了解和掌握它的核心概念和实践将帮助您构建更高效、更智能的应用程序。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133