PaddleSeg项目中训练集、验证集与测试集的配置实践
2025-05-26 13:41:08作者:宣聪麟
数据集划分的重要性
在深度学习模型开发过程中,合理的数据集划分是确保模型性能评估可靠性的关键环节。PaddleSeg作为一款优秀的图像分割框架,其数据处理流程遵循机器学习的最佳实践,通常需要将原始数据划分为训练集、验证集和测试集三个部分。
PaddleSeg的默认配置机制
PaddleSeg的配置文件设计主要关注训练集(train_dataset)和验证集(val_dataset)的配置,这是出于以下考虑:
- 训练集用于模型参数的学习和优化
- 验证集用于超参数调优和模型选择
- 测试集评估通常在模型开发完成后进行
测试集评估的实践方案
虽然PaddleSeg没有直接提供测试集配置选项,但可以通过以下两种方式实现测试集评估:
方法一:临时替换验证集路径
- 在模型训练完成后,修改配置文件中的val_dataset路径为测试集路径
- 使用val.py脚本进行评估:
python tools/val.py \
--config 配置文件路径 \
--model_path 模型权重路径
这种方法简单直接,适合快速验证模型在测试集上的表现。
方法二:自定义代码扩展
对于需要更复杂测试流程的用户,可以考虑:
- 继承PaddleSeg的数据加载类,添加测试集支持
- 修改评估脚本,增加专门的测试模式
- 实现自定义的测试流程控制
数据集划分的最佳实践
无论采用哪种测试方案,都应注意:
- 测试集应当与训练集/验证集完全独立
- 测试集应反映真实应用场景的数据分布
- 避免任何形式的数据泄漏
- 保持评估指标的一致性
总结
PaddleSeg虽然默认不提供测试集配置接口,但通过简单的路径替换或适度的代码扩展,开发者完全可以实现规范的测试集评估流程。理解框架设计背后的考量,并根据项目需求选择最适合的实施方案,是使用任何深度学习框架都应掌握的重要技能。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210