Soybean Admin 项目中的离线 Iconify 图标支持方案解析
背景介绍
在现代前端开发中,图标系统是构建用户界面不可或缺的一部分。Soybean Admin 作为一款优秀的管理系统框架,采用了 Iconify 作为其图标解决方案。然而,在实际企业应用中,很多项目需要在内网环境中运行,这就带来了图标离线使用的需求。
技术挑战
Iconify 作为一款强大的图标框架,其优势在于提供了海量的图标集合。但这也带来了一个现实问题:完整的 @iconify/json 包体积高达 300MB 以上,如果直接引入会导致构建产物急剧膨胀,严重影响应用性能。
解决方案演进
Soybean Admin 团队经过深入调研,提供了以下解决方案:
-
内网资源地址配置:通过设置环境变量 VITE_ICONIFY_URL,开发者可以指定内网环境下的图标资源获取地址,这是最基础的离线支持方案。
-
按需加载机制:考虑到完整包体积过大,团队推荐使用 @iconify/vue 提供的 addCollection 方法,手动添加项目实际需要的图标集合。这种方式既满足了离线需求,又避免了不必要的体积膨胀。
实现建议
对于需要离线使用 Iconify 图标的开发者,建议采用以下实践方案:
-
分析项目实际图标需求:首先梳理项目中实际使用的图标集合,避免引入不必要的图标资源。
-
选择性引入图标集:通过 addCollection 方法,只引入项目需要的特定图标集合,而非全部 300MB 的资源。
-
建立内网图标资源库:在企业内网环境中搭建 Iconify 资源服务,通过 VITE_ICONIFY_URL 指向内网地址。
技术权衡
Soybean Admin 团队在实现这一功能时做出了明智的技术权衡:
- 放弃了全量离线打包的方案,因为这会显著增加构建产物大小
- 选择了更灵活的按需加载机制,既满足离线需求,又保持应用性能
- 保留了在线使用的可能性,为有条件的项目提供更丰富的图标选择
总结
Soybean Admin 对 Iconify 离线使用的支持方案体现了实用主义的设计思想。通过环境变量配置和按需加载 API,既解决了内网环境下的图标使用问题,又避免了不必要的资源浪费。这种平衡性能与功能的做法,值得其他前端项目借鉴。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00