Cloud-init在RHEL9系统中的网络渲染器选择问题解析
背景介绍
在Red Hat Enterprise Linux 9(RHEL9)系统中,网络配置存储方式发生了一个重要变化。从RHEL9开始,系统默认使用NetworkManager的keyfile格式(存储在/etc/NetworkManager/system-connections/目录下)来保存网络配置,而不是传统的sysconfig ifcfg文件格式(/etc/sysconfig/network-scripts/目录)。这一变化标志着ifcfg格式的逐步淘汰。
问题现象
然而,当在RHEL9系统上使用cloud-init进行网络配置时,发现一个与预期不符的行为:cloud-init始终选择使用sysconfig渲染器来生成ifcfg格式的网络配置文件,而不是遵循系统默认的NetworkManager keyfile格式。这导致系统网络配置处于非预期状态,即接口由NetworkManager管理,但配置文件却是传统的ifcfg格式。
技术分析
深入分析这个问题,我们发现其根源在于cloud-init的网络渲染器选择机制。在RHEL9系统中,cloud-init通过检测是否存在特定的NetworkManager插件文件(/usr/lib64/NetworkManager/*/libnm-settings-plugin-ifcfg-rh.so)来决定使用哪种渲染器。由于RHEL9的NetworkManager包始终包含这个插件文件,cloud-init便无条件地选择了sysconfig渲染器。
值得注意的是,RHEL9的不同版本对网络渲染器的支持有所差异:
- RHEL 9.0至9.2版本:仅支持sysconfig渲染器
- RHEL 9.3及以上版本:同时支持sysconfig和network-manager渲染器
解决方案
对于希望使用NetworkManager keyfile格式的用户,可以通过以下方式实现:
-
手动迁移:在系统启动后,使用nmcli命令将现有配置迁移到keyfile格式:
nmcli connection migrate -
自定义镜像:在创建系统镜像时,添加配置文件指定优先使用network-manager渲染器:
cat /etc/cloud/cloud.cfg.d/92_network_setup.cfg system_info: network: renderers: ['network-manager'] -
调整渲染器优先级:不删除其他渲染器,而是调整它们的优先级顺序:
network: renderers: ['netplan', 'network-manager', 'networkd', 'sysconfig', 'eni']
未来展望
根据Red Hat的规划,RHEL10将完全转向NetworkManager渲染器作为默认且唯一的网络配置方式。届时,sysconfig渲染器将不再可用,因为相应的ifcfg插件将被移除。RHEL9系列版本将作为过渡期,用于稳定NetworkManager渲染器的功能。
总结
虽然当前cloud-init在RHEL9上默认使用sysconfig渲染器的行为与系统默认的NetworkManager keyfile格式存在差异,但这实际上是设计使然。用户可以根据实际需求选择保持默认行为或主动配置使用NetworkManager渲染器。理解这一机制有助于系统管理员更好地管理和维护基于RHEL9的云环境网络配置。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00